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Preface

∬Σ
∇ × 𝐹 ⋅ 𝑑𝑆 = ∫𝜕Σ 𝐹 ⋅ 𝑑𝑠

This is the set of course notes for my Calculus 3 course (math 211) at the University of
San Francisco.
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Part I.

Space

3





In this part we acquaint ourselves with the mathematics of 𝑛-dimensional spaces. Such
spaces are described using 𝑛-tuples of real numbers

(𝑥1, 𝑥2, … , 𝑥𝑛)

and are indespensible when discussing positions in real, physical space (especially in
dimension 3 and 4 for space and spacetime). But they are also indespensible to mathe-
maticians working on other problems, where high dimensional spaces are used to track
the behavior of complex objects.

We learn to differentiate between points (which measure position) and vectors (which
give a direction and magnitude), and cover the operations of dot and cross product
which are essential to the geometry of vectors.

Finally, we use our knowledge of points and vectors to construct formulas for shapes in
2,3 and higher dimensional spaces; from lines planes and spheres to more complicated
objects.
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1. Dimensions

(Relevant Section of the Textbook: 12.1 Three Dimensional Coordinate Sys-
tems, and 10.3 Polar Coordinates)

To do calculus in higher dimensions, we need first a precise mathematical language that
will allow us to describe these spaces. And that language begins with a foundational, but
straightforward definition: the 𝑛-tuple.

Definition 1.1 (n-Tuple). An 𝑛 tuple of real numbers is an ordered list of real num-
bers. For example, a 2-tuple like (3, 7) is often called an ordered pair. Tuples are some-
times written horizontally and sometimes vertically, depending on convenience. Vari-
ous styles of brackets are used on tuples, depending on the author and usage. Below
are examples of a 3-tuple, a 4-tuple, and a 7-tuple in several styles:

⟨0, −12, 0.3⟩
⎛
⎜
⎜
⎝

3
−7
𝜋
4

⎞
⎟
⎟
⎠

[1, 2, 3, 4, 5, 6, 7]

Just as numbers represent a location on the line, tuples can be used to represent locations
in space. When we use them as such, we call the entire 𝑛-tuple a point, and we call each
of the entries a coordinate.

Definition 1.2 (Point). A point is an 𝑛-tuplewhen it is being used to represent a location
in space.

You are already familiar with this from single variable calculus, where we use orderd
pairs (𝑥, 𝑦) to represent points of the 2-dimensional plane ℝ2. By extension, we can
use three-tuples (𝑥, 𝑦 , 𝑧) to represent points in the physical space around us. But what
about even bigger tuples, like the 7-tuple [1, 2, 3, 4, 5, 6, 7]? What kind of space does this
represent a point in? This is a point in a seven dimensional space!

Definition 1.3. The dimension of a space is the number of coordinates needed to de-
scribe a point in it.
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1. Dimensions

A plane is 2-dimensional, but so is the surface of a sphere: if your friend called you and
gave you two numbers - their latitude and longitude - you could precisely locate them
on the Earth’s surface.

(37.7749∘𝑁 , 122.4194∘𝑊)

The space around us is three dimensional because if I wanted to direct you to my apart-
ment I would need to give you not only the two street intersections (two numbers,
specifying a point on the earth’s surface) but also the floor I live on (the height above
the surface).

(1𝑠𝑡Street, 3𝑟𝑑Ave, 4𝑡ℎFloor)

But the space-time we live in is four-dimensional because if we wanted to meet for lunch
I would need to give you four numbers, my position in space and also when to meet, so
that we do not miss each other, you thinking luch is at 11 and I thinking noon.

(1𝑠𝑡Street, 3𝑟𝑑Ave, 4𝑡ℎFloor, 12pm)

Thus, there are direct phyiscal reasons to consider calculus in two, three and four dimen-
sions. And, our best physical theories of the world at human scales (classical mechanics)
are written in this language. Understanding weather, planetary motion, fluid flow, and
black holes requires a solid grounding in multivariable calculus. But, since the real
world is only four dimensional, does that mean there is no need for the calculus of 7, or
13, or 132,234,453 dimensional space?

1.1. Higher Dimensions and Configurations

All the spaces we have talked about so far represent physical space, but mathematics
is allows us to be much more general than this. Imagine you are designing a tin can,
and you want to start by thinking of the space of possibilities: what are all the possible
shapes of a cylindrical can? As such a can is fully determined by its radius and its height,
we can think of these as being two coordinates, and expressing a particular can by an
ordered pair (𝑟 , ℎ). Thus, the space of possible cans is 2-dimensional!

What about the space of 𝐿-spaced desks? What is the dimension of this space? This
space has 5-dimensions: the length and width of each of the two sides of the desk, and
also its height.

8



1.2. Cartesian Coordinates

(ℓ1, ℓ2, 𝑤1, 𝑤2, ℎ)

But where really mind-blowing numbers of dimensions begin to arise is in the study
of data. Imagine you are modeling the conditions in the San Francisco bay, and you
take a measurement of the sea height for every square kilometer. The bay has an area
of 4000 square kilometers, so this means your datapoint has 4, 000 numbers in it! Your
approximation to the bay’s surface is a point in four thousand dimensional space!

Or, consider an image taken by a digital camera: for simplicity assume the image is in
black and white, and 10 megapixels. This means each pixel is determined by a single
number (how light or dark the pixel is), and the image has 10 million pixels, so it’s
encoded by ten million numbers! That means even simple images are worked with
mathematically as points in a space with millions of dimensions.

1.2. Cartesian Coordinates

What do the actual numbers in the 𝑛-tuple mean? In the examples above we have been
implicitly using 𝑥𝑦𝑧 or length-width-height coordinates: the first number tells you the
distance left/right, the second back/forth and the third up/down. These are called Carte-
sian Coordinates after the mathematician-philosopher Rene Descartes. While this sort
of thinking comes from physical space, it is useful to help give a concrete picture even
to non-physical spaces such as the space of soup cans, or the space of images.

Definition 1.4 (Cartesian Coordinates). Cartesian coordinates starts by choosing 𝑛 per-
pendicular lines in 𝑛 dimensional space: for example the 𝑥 and 𝑦 axes in the plane, or
the 𝑥, 𝑦 , 𝑧 axes in ℝ3. A point in space is given coordinates (𝑎, 𝑏, 𝑐) if it lies at distance 𝑎
along the first axis, 𝑏 along the second, and 𝑐 along the third.

Here’s an animation showing a point in 3D space, and its components along the 𝑥, 𝑦
and 𝑧 axes.

https://stevejtrettel.site/code/2023/vector-components

Perhaps the most famous theorem of geometry is the Pythagorean Theorem, which tells
us how to compute distance in the cartesian coordinates on the plane:

Theorem 1.1. The distance of the point (𝑎, 𝑏) from the point (0, 0) in the plane is

dist = √𝑎2 + 𝑏2

9
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1. Dimensions

Once we know this theorem is true in ℝ2 (thanks, Pythagoras!) we can use this proof
to extend it to higher dimensions!

Theorem 1.2. In ℝ3, the distance of (𝑥, 𝑦 , 𝑧) from the origin is

dist = √𝑥2 + 𝑦2 + 𝑧2

In general, if (𝑥1, … , 𝑥𝑛) is a point in ℝ𝑛, its distance from the origin is

dist =
√

𝑛
∑
𝑖=1

𝑥2𝑖

Given this description of distance, we can give a precise description of circles and
spheres: a circle is the set of points which are all a fixed distance (the radius) from
a fixed point (the center). The unit circle is the set of points distance 1 from the origin.
Similarly, the unit sphere is the set of points distance 1 from the origin in 3-dimensional
space.

In more generality, we can define a hypersphere in any higher dimension the same way:
by taking the set of points which are a fixed distance from the origin in that space!

Definition 1.5. The unit circle (sometimes called the unit 1-sphere) is the set of points
in ℝ2 given by

𝑥2 + 𝑦2 = 1
The unit sphere (sometimes called the unit 2-sphere) is the set of points in ℝ3 satisfying

𝑥2 + 𝑦2 + 𝑧2 = 1

The unit 3-sphere is the set of points in four dimensional space satisfying

𝑥2 + 𝑦2 + 𝑧2 + 𝑤2 = 1

And so on…

Exercise 1.1. Why is the circle called a 1-sphere, and the sphere in $3D space called
the 2-sphere?

We can also use cartesian coordiantes to describe other simple shapes, like lines. In ℝ2
with cartesian coordinates, the 𝑥-axis is given by the set of points {(𝑥, 0)}: that is, every
point on the 𝑥-axis has 𝑦-coordinate equal to zero.
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1.3. Other Coordinate Systems

Definition 1.6 (Coordinate Axes and Planes). The 𝑥 axis in the plane is given by the
equation 𝑦 = 0, and the 𝑦 axis by the equation 𝑥 = 0. Similarly in ℝ3, the 𝑥𝑦 plane is
given by the equation 𝑧 = 0, the 𝑦𝑧 plane by the equation 𝑥 = 0, and the 𝑥𝑧 plane by
the equation 𝑦 = 0.

A point can be projected onto a coordinate axis or plane by setting that coordinate to
zero. The resulting point is the closest point on that line or plane to the original point.
This makes it a relatively straightforward calculation to find the distance from a point
to a coordinate axis/plane!

Here’s some practice problems:

1.3. Other Coordinate Systems

While the majority of our class will occur in Cartesian coordinates as they are the first
coordinate system everyone must master, we will at times consider a couple of other in-
terpretations of 𝑛-tuples, which make describing certain systems with circular or spher-
ical symmetry easier. The first of these may already be familiar from earlier calculus
classes: polar coordinates on the plane.

Definition 1.7 (Polar Coordinates). A point (𝑟 , 𝜃) in polar coordinates on the plane, for
𝑟 > 0 and 𝜃 ∈ [0, 2𝜋) represents the point which lies at a distance 𝑟 from the origin, and
makes an angle of 𝜃 with the positive 𝑥-axis.

From this description we can convert a point in polar coordinates to cartesian coordi-
nates (𝑥, 𝑦) using trigonometry:

Definition 1.8. The conversion from polar coordinates (𝑟 , 𝜃) to cartesial coordiantes
(𝑥, 𝑦) is given by

(𝑥𝑦) = (𝑟 cos 𝜃𝑟 sin 𝜃 )

Using polar coordinates simplifies many things when circles are involved: for example,
the equation of the unit circle 𝑥2 + 𝑦2 = 1 becomes the much simpler equation 𝑟 = 1 in
polar coordinates!

Using polar coordinates for 𝑥, 𝑦 in the 3-dimensional space (𝑥, 𝑦 , 𝑧) gives a coordinate
system called cylindrical coordinates.
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1. Dimensions

Definition 1.9 (Cylindrical Coordinates). A 3-tuple (𝑟 , 𝜃 , 𝑧) represents a point in ℝ3
using cylindrical coordiantes where the position in the 𝑥𝑦 plane is given by the polar
coordinates (𝑟 , 𝜃) and the height above the 𝑥𝑦 plane is given by 𝑧. The conversion to
carteisan coordinates is

(
𝑥
𝑦
𝑧
) = (

𝑟 cos 𝜃
𝑟 sin 𝜃
𝑧

)

Finally we will come across a third coordinate system in this class: spherical coordinates.
This represents 3-dimensional space starting with a collection of concentric spheres.
Don’t worry too much about this now, we will come back to it in some weeks! I’ve only
placed it here for your future reference.

Definition 1.10 (Spherical Coordinates). A 3-tuple (𝜌, 𝜃, 𝜙) represents a point in ℝ3
using spherical coordiantes where 𝜌 is the distance from the origin, 𝜃 is the angle with
the positive 𝑥 axis (as in polar coordiantes) and 𝜙 is the angle with the positive 𝑧-axis.
The conversion to cartesian coordinates is given by

(
𝑥
𝑦
𝑧
) = (

𝜌 cos 𝜃 sin 𝜙
𝜌 sin 𝜃 sin 𝜙
𝜌 cos 𝜙

)

1.4. Videos

1.4.1. Cartesian Coordinates

https://youtu.be/iBgOoaeLUcM

1.4.2. Higher Dimensions

https://youtu.be/yjUy9kevd3Y

https://youtu.be/qo0KKSXWW4E

1.4.3. Distances

https://youtu.be/GJDi4_Af_lI
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2. Vectors

(Relevant Section of the Textbook: 12.2 Vectors)

We have talked about one fundamental use of 𝑛-tuples of real numbers: describing posi-
titions in space. But they also play a foundational role in the theory of vectors, which
help us measure not locations but directions.

Definition 2.1 (Vector). A vector is a directed line segment, an object that stores both a
length (called its magnitude), and a direction. You may draw a vector as a directed line
segment, or a little arrow in space.

Example 2.1 (Points vs Vectors). Which of the following quantities are positions?
Which are vectors?

• Where I parked my car.
• The wind hitting me in the face
• The location of mars in the solar system.
• The velocity of mars in the solar system.
• Gravity’s acceleration

Exercise 2.1. Come up with some of your own scenarios that are measured using: 2-d
points. 3-d vectors. 4d points, 4d vectors.

To work with vectors, we need a means of writing them down using numbers. One
idea is to use the same Cartesian coordinate system discussed in the previous chapter, to
express a vector in components.

Definition 2.2 (Vector Notation). To help avoid confusing points and vectors, we will
try to use different notations for the two. For a point, we use a simple letter, like 𝑝
whereas for a vector we either make it bold like u or decorate it with an arrow, 𝑢.
When using cartesian coordinates, we write a point inline with round brackets, 𝑝 =
(1, 2, 3) whereas for a vector we use angle brackets, 𝑢 = ⟨1, 2, 3⟩. We also sometimes
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2. Vectors

write a vector as a column of numbers, instead of a row to save space, or for other
stylistic reasons: in this case we just use round brackets for ease of typesetting.

𝑢 = (
1
2
3
)

Definition 2.3 (The Zero Vector). The zero vector in an 𝑛 dimensional space is the
vector with no magnitude and no length. In coordinates, this is the 𝑛-tuple of all zeroes:
⟨0, 0, 0⟩

2.1. Arithmetic of Vectors

Definition 2.4 (Vector Addition). Vector addition is defined to give the combined effect
of two vectors: if 𝑢 and 𝑣 are vectors, 𝑢 + 𝑣 is defined geometrically by the diagonal of
the parallelogramwith sides 𝑢 and 𝑣 . This is equivalent to the vector formed by stacking
𝑢 and 𝑣 on one another head-to-tail, in either order.

In cartesian coordinates, this is

(
𝑥
𝑦
𝑧
) + (

𝑎
𝑏
𝑐
) = (

𝑥 + 𝑎
𝑦 + 𝑏
𝑧 + 𝑐

)

PICTURE

Vector addition can be used to describe complicated motion in terms of simpler pieces.
Indeed, this idea was used by the ancient greeks in their planetary model, where the
complicated motion of objects in the heavens was modeled as a combination of various
circular motions (or epicycles). Below is an animation showing their model of Mars’
motion about the earth, decomposed in terms of a sum of three circles.

https://stevejtrettel.site/code/2020/epicycle-mars/

Definition 2.5 (Scalar Multiplication). If 𝑢 is a vector and 𝑐 is a number, the vector 𝑐𝑢
is defined to be the vector pointing in the same direction as 𝑢, but 𝑐 times as long. In
Cartesian coordinates,

𝑐⟨𝑢1, 𝑢2, 𝑢3⟩ = ⟨𝑐𝑢1, 𝑐𝑢2, 𝑐𝑢3⟩

Because we think of real numbers as being the kind of things that can scale vectors, we
often call them scalars.
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2.2. Coordinate Bases

Definition 2.6 (Linear Combination). A linear combination of a list of vectors is a new
vector made by taking a sum of scalar multiples of the original list.

For example, if 𝑢 = ⟨1, 2⟩ and 𝑣 = ⟨3, 4⟩, then the following is a linear combination:

𝑤 = 7 (12) − 2 (34) = ( 7 − 6
14 − 8) = (1, 6)

In this calculation you saw a bit of vector arithmetic: it works just like the arithmetic
of numbers, one coordinate at a time.

Theorem 2.1 (Vector Arithmetic). Let 𝑢, 𝑣 and 𝑤 be vectors, and 𝑐, 𝑘 be scalars. Then:

𝑢 + 𝑣 = 𝑣 + 𝑢 𝑢 + (𝑣 + 𝑤) = (𝑢 + 𝑣) + 𝑤

𝑢 + 0⃗ = 𝑢 𝑢 + (−𝑢) = 0⃗

𝑐(𝑢 + 𝑣) = 𝑐𝑢 + 𝑐𝑣 (𝑐 + 𝑘)𝑢 = 𝑐𝑢 + 𝑘𝑢

(𝑐𝑘)𝑢 = 𝑐(𝑘𝑢) 1𝑢 = 𝑢

2.2. Coordinate Bases

Cartesian coordinates are built from a collection of perpendicular axes. Each of these
axes has a direction that we call a standard basis direction

Definition 2.7 (Standard Basis). For ℝ2 the standard basis vectors are the vectors ⟨1, 0⟩
and ⟨0, 1⟩, pointing along the positive direction of the 𝑥 and 𝑦 axes.

For ℝ3, the standard basis vectors are teh vectors ⟨1, 0, 0, ⟨0, 1, 0⟩ and ⟨0, 0, 1⟩ pointing
along the positive direction of the 𝑥, 𝑦 and 𝑧 axes respectively.

In general 𝑛-dimensional space, the 𝑛 basis vectors are the vecctors which have all 0s as
coordinates except a single 1. The vector whose 1 is in the 𝑖𝑡ℎ coordinate is called the
𝑖𝑡ℎ basis vector.
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2. Vectors

For example, ⟨0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0⟩ is the 4𝑡ℎ standard basis vector of 12-
dimensional space. In two and three dimensions we give each of the bases a unique
letter to aid in readability, instead of dealing with messy subscritps for only a handful
of symbols.

Definition 2.8 (Standard Basis in ℝ2 and ℝ3). In ℝ2 we write the standard basis vectors
as

̂𝚤 = ⟨1, 0⟩ ̂𝚥 = ⟨0, 1⟩

In ℝ3 we continue this, writing

̂𝚤 = ⟨1, 0, 0⟩ ̂𝚥 = ⟨0, 1, 0⟩ �̂� = ⟨0, 0, 1⟩

We can use these standard basis vectors to express any vector in space. For example,
in ℝ3 every vector is some amount in the ̂𝚤 direction, some amount in the ̂𝚥 direction,
and some amount in the �̂� direction. This means we can write any vector as a linear
combination of these:

𝑢 = 𝑥 ̂𝚤 + 𝑦 ̂𝚥 + 𝑧�̂�

https://stevejtrettel.site/code/2023/vector-components

2.3. Magnitude and Direction Information

One common use for vectors is to give directions to get from one point to another: that
is, given points 𝑝, 𝑞 in space, we want a vector starting at 𝑝 and ending at 𝑞.
PIC

This vector encodes the magnitude and direction information of “if you are at 𝑝 and you
walk this amount in this direction, you’ll arrive at 𝑞”. We can construct such a vector

Definition 2.9 (Vector from Two Points). The displacement vector from a point 𝑝 =
(𝑝1, 𝑝2, 𝑝3) to a point 𝑞 = (𝑞1, 𝑞2, 𝑞3) is

𝑑 = 𝑞 − 𝑝 = (
𝑞1 − 𝑝1
𝑞2 − 𝑝2
𝑞3 − 𝑝3

)

And, analogously in other dimensions.
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2.4. Videos

Thus, the vector ⟨𝑥, 𝑦 , 𝑧⟩ is the displacement vector from the origin$ to the point* (𝑥, 𝑦 , 𝑧).
Its length (or magnitude) is just the distance from the origin to its other endpoint, whih
we know from the pythagorean theorem.

Definition 2.10 (Magnitude). The magnitude of the vector 𝑢 = ⟨𝑢1, 𝑢2, 𝑢3⟩ is given by
the pythagorean theorem:

‖𝑢‖ = √𝑢21 + 𝑢22 + 𝑢23
And, analogously in other dimensions.

A vector of length 1 is called a unit vector. We think of these as measuring purely direc-
tion just as we think of numbers as measuring purely length.

Definition 2.11 (Unit Vector in Given Direction). If 𝑣 is a nonzero vector, the unit
vector in direction 𝑣 is denoted ̂𝑣 , and is calculated by dividing 𝑣 by its own magnitude:

̂𝑣 ∶= 1
‖𝑣‖𝑣

Exercise 2.2 (Unit Vectors in Given Directions). Find a unit vector in the direction of
⟨1, 2, 3, 4⟩.

Exercise 2.3 (Unit Vectors in Given Directions). Find a vector of length 2 in the direc-
tion of ⟨1, 1, 1, 1, 1, 1, 1, 1⟩. Hint: find a unit vector in this direction. What happens to its
length if you scalar multiply it by 2?

2.4. Videos

https://youtu.be/fNk_zzaMoSs

https://youtu.be/etsFVs354GM

https://youtu.be/3V_3dnO-0lo

https://youtu.be/F6iTnOoJ9as
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2. Vectors

2.4.1. Video Tutorial Series

Here’s a short series of videos going through the different vector properties discussed
above:

https://youtu.be/51vgIfdBlAk

https://youtu.be/MoHMw0ZO7bU

https://youtu.be/lulSApFPw1M

https://youtu.be/MpN8BIci-Ys

https://youtu.be/DXB1PWq8Dg0
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3. Operations

(Relevant Sections of the Textbook: 12.3 The Dot Product, and 12.4 The Cross
Product)

3.1. The Dot Product

The dot product is an operation which takes in two vectors and outputs a single number.
We will use it as a tool to measure several things, but it’s perhaps easiest to learn by just
diving right in with the definition.

Definition 3.1 (Dot Product). If 𝑢 = ⟨𝑢1, 𝑢2, 𝑢3⟩ and 𝑣 = ⟨𝑣1, 𝑣2, 𝑣3⟩ then the dot product
of 𝑢 and 𝑣 is the scalar

𝑢 ⋅ 𝑣 = 𝑢1𝑣1 + 𝑢2𝑣2 + 𝑢3𝑣3
And similarly in other dimensions, if 𝑢, 𝑣 are vectors in 𝑛 dimensions, then

𝑢 ⋅ 𝑣 =
𝑛
∑
𝑖=1

𝑢𝑖𝑣𝑖

For example, the dot product of ⟨1, 2⟩ and ⟨3, 4⟩ is 1 × 3 + 2 × 4 = 3 + 8 = 11, and the dot
product of ̂𝚤 − ̂𝚥 and 2 ̂𝚤 − ̂𝚥 + 3�̂� can be computed by either (1) converting to coordinate
notation, or (2) pairing up coefficients and multiplying.

( ̂𝚤 − ̂𝚥) ⋅ (2 ̂𝚤 − ̂𝚥 + 3�̂�) = (1 × 2) + (−1 × −1) + (0 × 3) = 3

We will unpack a lot more of the geometry hidden inside of this simple defintion soon,
but a first thing to notice is that the magnitude of a vector can be recovered from its dot
product with itself.

Theorem 3.1. If 𝑢 is any vecotr, then the magnitude of 𝑢 can be calculated via

‖𝑢‖ = √𝑢 ⋅ 𝑢
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3. Operations

Exercise 3.1. Check that this works for the vector ⟨𝑥, 𝑦 , 𝑧⟩ in ℝ3.

The dot product is built out of the multiplication and addition of ordinary numbers, so
it also inherits alot of their algebraic properties:

Theorem 3.2 (Properties of the Dot Product). If 𝑢, 𝑣 and 𝑤 are vectors and 𝑐, 𝑘 are scalars
then

0⃗ ⋅ 𝑢 = 0⃗ 𝑢 ⋅ 𝑣 = 𝑣 ⋅ 𝑢

𝑢 ⋅ (𝑣 + 𝑤) = 𝑢 + 𝑤 + 𝑣 ⋅ 𝑤 𝑐(𝑢 ⋅ 𝑣) = 𝑐(𝑢 ⋅ 𝑣) = 𝑢 ⋅ (𝑐𝑣)

3.1.1. Measuring Angles

We’ve already seen that the dot product of a vector with itself measures the (square
of the) magnitude of that vector. But dot products are also able to recover direction
information as well.

Theorem 3.3 (Angles and the Dot Product). If 𝑢, 𝑣 are vectors, their dot product is related
to the angle 𝜃 between them via

𝑢 ⋅ 𝑣 = |𝑢||𝑣 | cos 𝜃
Re-arranging this, we get a formula that computes the angle between two vectors using
only vector operations!

cos 𝜃 = 𝑢 ⋅ 𝑣
|𝑢||𝑣 |

Exercise 3.2. What is the angle between ⟨1, 2⟩ and ⟩3, 4⟩ in radians?

What is the angle between ̂𝚤 + ̂𝚥 and ̂𝚥 in degrees?

Definition 3.2 (Orthogonality). Two vectors are called orthogonal if the angle between
them is 90 degrees, or 𝜋/2 radians. Since cos(𝜋/2) = 0, this means that two vectors are
orthogonal if and only their dot product is zero.

Note that the zero vector dotted with any other vector always gives zero, so we say the
zero vector is orthogonal to every other vector.
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3.1. The Dot Product

3.1.2. Projections

One very useful application of the dot product is to help measure “how much of vector
𝑣 is pointed in direction �̂�?”
The scalar projection of 𝑣 onto the unit vector �̂� is the dot product 𝑣 ⋅ �̂�. If 𝑢 is not a unit
vector to start with, we first make it into a unit vector by dividing by its magnitude, to
find the scalar projection: $𝑣 ⋅ �̂� = 𝑣 ⋅ 𝑢

|𝑢|

Definition 3.3 (Scalar Projection). The scalar projection of 𝑣 onto 𝑢 is

comp𝑢(𝑣) = 𝑣 ⋅ 𝑢
|𝑢|

Exercise 3.3 (Scalar Projection). What is the scalar projection of ⟨1, 2⟩ onto ⟨3, 4⟩?
What is the scalar projection of ⟨4, 3, −2⟩ onto ⟨0, 1, 0⟩?

This tells us how much of a vector is pointed in a given direction, and so the answer is a
scalar, or number. Oftentimes it is useful to compute a vector from this, whose direction
is in the direction of 𝑢, and magnitude is the scalar we just computed. This vector can
be thought of as the projection of 𝑣 onto 𝑢, or the shadow of 𝑣 on the line spanned by
𝑢.
PICTURE

Definition 3.4 (Vector Projection). The vector projection of a vector 𝑣 onto a vector 𝑢
is the scalar projection times the *unit vector in direction 𝑢. In symbols:

proj𝑢(𝑣) = comp𝑢(𝑣)
= (𝑣 ⋅ 𝑢‖𝑢‖ )

𝑢
‖𝑢‖

= 𝑣 ⋅ 𝑢
𝑢 ⋅ 𝑢 𝑢

Exercise 3.4 (Vector Projection). Find the vector projection of ⟨1, 1, 2⟩ onto the vector
⟨−2, 3, 1⟩.

21



3. Operations

3.1.3. Standard Basis

Theorem 3.4. If 𝑣 = ⟨𝑎, 𝑏, 𝑐⟩ is a vector, its scalar projections onto the three standard basis
vectors ̂𝚤, ̂𝚥 , �̂� are

comp ̂𝚤(𝑣) = 𝑣 ⋅ ̂𝚤 = 𝑎
comp ̂𝚥(𝑣) = 𝑣 ⋅ ̂𝚥 = 𝑏
comp�̂�(𝑣) = 𝑣 ⋅ �̂� = 𝑐

This confirms our notions of “amount” and “angle” make sense with our original inter-
pretation of the vector ⟨𝑎, 𝑏, 𝑐⟩ as being an amount 𝑎 in the direction ̂𝚤, 𝑏 in the direction
̂𝚥, and 𝑐 in the direction �̂�.

Theorem 3.5 (Direction Angle). The angles 𝛼, 𝛽, 𝛾 a vector 𝑣 = ⟨𝑎, 𝑏, 𝑐⟩ makes with the
direction of the standard basis ̂𝚤, ̂𝚥 , �̂� respectively are

cos 𝛼 = 𝑣 ⋅ ̂𝚤
‖𝑣 ‖ = 𝑎

‖𝑣‖

cos 𝛽 = 𝑣 ⋅ ̂𝚥
‖𝑣 ‖ = 𝑏

‖𝑣‖

cos 𝛾 = 𝑣 ⋅ �̂�
‖𝑣‖ = 𝑐

‖𝑣‖

3.2. Cross Product

In two dimensions, given one vector 𝑣 = ⟨𝑎, 𝑏⟩ it is easy to find an orthogonal vector to
it: 𝑣⟂ = ⟨𝑏, −𝑎⟩ for example.

In 3D, the analogous problem is more difficult: given two vectors, how do we find a
third vector that is orthgonal to them both at once? A nice solution to this is given by
the cross product.

Definition 3.5 (Cross Product). The cross product of 𝑢 = ⟨𝑢𝑥 , 𝑢𝑦 , 𝑢𝑧⟩ and 𝑣 = ⟨𝑣𝑥 , 𝑣𝑦 , 𝑣𝑧⟩
is

𝑢 × 𝑣 = ⟨𝑢𝑦 𝑣𝑧 − 𝑢𝑧𝑣𝑦 , 𝑢𝑥𝑣𝑧 − 𝑢𝑧𝑣𝑥 , 𝑢𝑥𝑣𝑦 − 𝑢𝑦 𝑣𝑥 ⟩

https://stevejtrettel.site/code/2023/cross-product
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3.2. Cross Product

Exercise 3.5 (Orthogonality of the Cross Product). Check that if 𝑢 = ⟨𝑎, 𝑏, 𝑐⟩ and 𝑣 =
⟨𝑥, 𝑦 , 𝑧⟩ are two vectors, that 𝑢 × 𝑣 is orthogonal to both 𝑢 and 𝑣 .

While there are many vectors orthogonal to 𝑢 and 𝑣 , this particular choice has some very
nice mathematical properties. In particular, it gets it’s name because it acts algebraically
a lot multiplication:

Theorem 3.6 (Properties of the Cross Product). Let 𝑢, 𝑣 , 𝑤 be vectors, and 𝑘 a scalar.
Then

𝑢 × (𝑣 + 𝑤) = 𝑢 × 𝑣 + 𝑢 × 𝑤

(𝑢 + 𝑣) × 𝑤 = 𝑢 × 𝑤 + 𝑣 × 𝑤

(𝑘𝑢) × 𝑣 = 𝑘(𝑢 × 𝑣) = 𝑢 × (𝑘𝑣)

However, the cross product has two very important differences from regular multi-
plication: the order matters!

Theorem 3.7 (Non-Commutativity of the Cross Product). If 𝑢 and 𝑣 are vectors, then

𝑢 × 𝑣 = −𝑣 × 𝑢

Not only does the order that you place the vectors in the product matter, but if you are
doing more than one cross product, the order in which you perform them matters as
well!

Theorem 3.8 (Non-Associativity of the Cross Product). If 𝑢, 𝑣 and 𝑤 are vectors, then

(𝑢 × 𝑣) × 𝑤 ≠ 𝑢 × (𝑣 × 𝑤)

3.2.1. Computing the Cross Product

Definition 3.6 (2 × 2 determinants). The determinant of a 2 × 2 matrix is

|𝑎 𝑏
𝑐 𝑑| = 𝑎𝑑 − 𝑏𝑐
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3. Operations

Using this notation, we can recast the definition of the cross product from Definition 3.5
to look like

𝑢 × 𝑣 = |𝑢𝑦 𝑢𝑧
𝑣𝑦 𝑣𝑧 | ̂𝚤 − |𝑢𝑥 𝑢𝑧

𝑣𝑥 𝑣𝑧 | ̂𝚥 + |𝑢𝑥 𝑢𝑦
𝑣𝑥 𝑣𝑦 | �̂�

Note the minus sign on the second term (compare with Definition 3.5 to see where a −1
was factored out). This formula can in turn be written even more compactly using the
definition of a 3 × 3 determinant:

Definition 3.7 (3 × 3 determinants). The determinant of a 3 × 3 matrix is

|
𝑥 𝑦 𝑧
𝑎 𝑏 𝑐
𝑑 𝑒 𝑓

| = 𝑥 |𝑏 𝑐
𝑒 𝑓 | − 𝑦 |𝑎 𝑐

𝑑 𝑓 | + 𝑧 |𝑎 𝑏
𝑑 𝑒|

Putting it all together,

Definition 3.8. The cross product of 𝑢 = ⟨𝑢𝑥 , 𝑢𝑦 , 𝑢𝑧⟩ and 𝑣 = ⟨𝑣𝑥 , 𝑣𝑦 , 𝑣𝑧⟩ is

𝑢 × 𝑣 = |
̂𝚤 ̂𝚥 �̂�

𝑢𝑥 𝑢𝑦 𝑢𝑧
𝑣𝑥 𝑣𝑦 𝑣𝑧

|

= |𝑢𝑦 𝑢𝑧
𝑣𝑦 𝑣𝑧 | ̂𝚤 − |𝑢𝑥 𝑢𝑧

𝑣𝑥 𝑣𝑧 | ̂𝚥 + |𝑢𝑥 𝑢𝑦
𝑣𝑥 𝑣𝑦 | �̂�

While the cross product is specific to three dimensions, later in the course we will some-
times apply it to 2-dimensional vectors, where we think of a vector 𝑣 = ⟨𝑥, 𝑦⟩ in ℝ2 as
being the vector 𝑣 = ⟨𝑥, 𝑦 , 0⟩ in ℝ3. In this case, the cross product of two planar vec-
tors has a rather simple formula (for instance, we know it must point directly along the
𝑧-axis!)

Definition 3.9 (Planar Cross Product). If 𝑢 = ⟨𝑎, 𝑏⟩ and 𝑣 = ⟨𝑐, 𝑑⟩ are two vectors in ℝ2,
their cross product, when thought of as vectors in the 𝑥𝑦 plane of ℝ3 is

𝑢 × 𝑣 = |𝑎 𝑏
𝑐 𝑑| �̂� = ⟨0, 0, 𝑎𝑑 − 𝑏𝑐⟩
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3.2. Cross Product

3.2.2. Geometry of the Cross Product

The main property of the cross product is that it’s a third vector that its orthogonal
to the two vectors you start with. If you did Exercise 3.5, you’ve already proven this
theorem:

Theorem 3.9 (Orthogonality of the Cross Product). The vector 𝑢 × 𝑣 is orthogonal to
both 𝑢 and 𝑣 .

Howver there is an entire line of vectors orthogonal to 𝑢 and 𝑣 . Which of these is the
cross product? We need to understand its magnitude and its direction.

Theorem3.10. Themagnitude of the cross product 𝑢×𝑣 is given in terms of themagnitudes
of 𝑢 and 𝑣 , and the angle 𝜃 between them:

|𝑢 × 𝑣 | = |𝑢||𝑣 | sin 𝜃

This formula, base times height times the sine of the angle between them may be familiar
as the area of a parallelogram. That gives an even more useful interpretation of the
cross product’s length:

Theorem 3.11. The magnitude of the cross product 𝑢 × 𝑣 is the area of the parallelogram
spanned by 𝑢 and 𝑣 .

This has an immediate corollary: if 𝑢 and 𝑣 are parallel the parallelogram they span
collapses onto a line. And lines have zero area, so the cross product must have zero
length! That is, it must be the vector of all zeroes.

Corollary 3.1. If 𝑢 and 𝑣 are parallel, then their cross product is the zero vector.

This gives us the magnitude information, but what about the direction? There are two
possible directions a vector could point if it must be perpendicular to the plane contain-
ing 𝑢 and 𝑣

Theorem 3.12 (The Right Hand Rule). The right hand rule is a mnemonic to help re-
member the direction of the cross product. If you take your right hand and align your palm
with the vector 𝑢 and then curl your fingers towards the vector 𝑣 , your thumb will point in
the direction 𝑢 × 𝑣 .
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3. Operations

3.2.3. The Standard Basis

It’s often useful to know the value of the cross product on the standard basis vectors, to
speed up some computations and avoid the lengthy formula in Definition 3.8.

Theorem 3.13.
̂𝚤 × ̂𝚥 = �̂� ̂𝚥 × �̂� = ̂𝚤 �̂� × ̂𝚤 = ̂𝚥

This is helpfully illustrated by a diagram:
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3.3. The Triple Product

Recalling that the cross product changes sign when you reverse the order of the inputs,
its possible to compute the rest of the possible stanard basis products:

̂𝚤 × ̂𝚥 = �̂� ⟹ ̂𝚥 × ̂𝚤 = −�̂�

In terms of the diagram, this means if you read “backward” along an arrow, you insert
a minus sign.

3.3. The Triple Product

If you have three vectors, its possible to combine the dot and cross product to get a
single number: take the cross product of two of them to get another vector, then dot
that result with the third.

Definition 3.10 (Triple Product). The scalar triple product of the vectors 𝑢, 𝑣 and 𝑤 is
defined by

𝑢 ⋅ (𝑣 × 𝑤)

Writing out the cross product using Definition 3.8, we see that this is actually a big 3× 3
determinant:

Theorem 3.14 (Triple Product). The triple product of vectors 𝑢, 𝑣 , 𝑤 is equal to the 3 × 3
determinant

𝑢 ⋅ (𝑣 × 𝑤) = |
𝑢𝑥 𝑢𝑦 𝑢𝑧
𝑣𝑥 𝑣𝑦 𝑣𝑧
𝑤𝑥 𝑤𝑦 𝑤𝑧

|

Just as the 2×2 determinant measures the area of a parallelogram, this 3×3 determinant
measures the volume of a parallelpiped

Theorem 3.15 (Triple Products & Volume). The magnitude of the triple product of 𝑢, 𝑣 , 𝑤
is the volume of the parallepiped spanned by these vectors.
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3. Operations

3.4. Videos

3.4.1. Dot Products

From the “Calculus Blue” series by Prof Robert Ghrist.

https://youtu.be/kw-TTdfJwY0

https://youtu.be/nRh8XqWEoj4

https://youtu.be/LxSMhIUaIc4

https://youtu.be/Dsa2MX2grMg

A video reviewing the basic definition of the dot product.

https://youtu.be/Tfuu7iSxGIA

The following two videos review the theory and an example for using the dot product
to find the angle between vectors.

https://youtu.be/Tfuu7iSxGIA

https://youtu.be/4WxniMJYySc

A short video on the definition of orthogonality.

https://youtu.be/tGYvaabMbYA

Real world applications of the dot product

https://youtu.be/TBpDMLCC2uY?si=8GL1huhqLnIDOwQy

3.4.2. Cross Products

https://youtu.be/_tXqoAehVR0

https://youtu.be/-734RN3BqPk

https://youtu.be/UAAQlqMCc8c

3.4.3. Triple Products

https://youtu.be/McWNGB1USQE

28

https://youtu.be/kw-TTdfJwY0
https://youtu.be/nRh8XqWEoj4
https://youtu.be/LxSMhIUaIc4
https://youtu.be/Dsa2MX2grMg
https://youtu.be/Tfuu7iSxGIA
https://youtu.be/Tfuu7iSxGIA
https://youtu.be/4WxniMJYySc
https://youtu.be/tGYvaabMbYA
https://youtu.be/TBpDMLCC2uY?si=8GL1huhqLnIDOwQy
https://youtu.be/_tXqoAehVR0
https://youtu.be/-734RN3BqPk
https://youtu.be/UAAQlqMCc8c
https://youtu.be/McWNGB1USQE


4. Shapes

(Relevant Sections of the Textbook: 12.5 Lines & Planes, and 12.6 Cylinders and
Quadric Surfaces)

Lines and planes are given by linear equations: involving only the coordinate variables
(𝑥, 𝑦 , 𝑧,etc), constants, and addition.

4.1. Lines

Definition 4.1 (Implicit Lines in ℝ2). An implicit line in the plane is an equation of the
form

𝑎𝑥 + 𝑏𝑦 = 𝑐
. When 𝑏 ≠ 0 this can be put into 𝑦 = 𝑚𝑥 + 𝑏 form as 𝑦 = − 𝑎

𝑏 𝑥 + 𝑐
𝑏 .

Theorem 4.1 (Normal Direction to a Line). The implicit line 𝑎𝑥 + 𝑏𝑦 = 𝑐 is orthogonal
to the vector 𝑛 = ⟨𝑎, 𝑏⟩.

How can we confirm this? Find two points along the line, subtract them to get their
direction vector, then take the dot product of this with ⟨𝑎, 𝑏⟩ - show its zero!

Finding the direction of a line by finding two points on it is tedious, so luckily once we
know the above fact we don’t need to do this anymore! Its easy to figure out the drection
of an implicit line: if its orthogonal to ⟨𝑎, 𝑏⟩, then it points in the direction ⟨−𝑏, 𝑎⟩ (recall
this vector is itself orthogonal to ⟨𝑎, 𝑏⟩).

Definition 4.2 (Parametric Lines). A parametric line is a function of the form

ℓ(𝑡) = 𝑝 + 𝑡𝑣

This passes through the point 𝑝 and is in the direction 𝑣 .

https://stevejtrettel.site/code/2023/parameterized-line
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4. Shapes

Theorem 4.2 (Line Segment Between Two Points). If 𝑝 and 𝑞 are two points in space, the
line segment between them can be parameterized by the following equation for 𝑡 ∈ [0, 1].

ℓ⃗(𝑡) = 𝑝 + 𝑡(𝑞 − 𝑝)
= (1 − 𝑡)𝑝 + 𝑡𝑞

4.2. Planes

Definition 4.3 (Implicit Planes I). A plane through the point 𝑝 = ⟨𝑥0, 𝑦0, 𝑧0⟩ with nor-
mal vector 𝑛 = ⟨𝑎, 𝑏, 𝑐⟩ is determined by the scalar equation

𝑛 ⋅ (⟨𝑥, 𝑦 , 𝑧⟩ − 𝑝) = 0
𝑎(𝑥 − 𝑥0) + 𝑏(𝑦 − 𝑦0) + 𝑐(𝑧 − 𝑧0) = 0

Distributing and collecting all the constants on the right hand side, we see planes are
given by simple, linear equations in three variables.

Definition 4.4 (Implicit Planes II). A plane in ℝ3 is specified by a scalar equation of the
form

𝑎𝑥 + 𝑏𝑦 + 𝑐𝑧 = 𝑑

The original derivation also allows us to easily read off the normal vector to a plane:

Theorem 4.3 (Normal Direction to a Plane). The implicit plane 𝑎𝑥 + 𝑏𝑦 + 𝑐𝑧 = 𝑑 is
orthogonal to the vector of coefficients 𝑛 = ⟨𝑎, 𝑏, 𝑐⟩

To write down a parametric line, we chose a point 𝑝 in space, and a direction 𝑣 . We then
added scaled versions of 𝑣 to 𝑝, which traced out a line. We can do something analogous
with a plane, except we pick two direction vectors, and have two scaling parameters

Definition 4.5 (Parametric Planes). A parametric plane through the point 𝑝 containing
the vectors 𝑢 and 𝑣 is given by the function

𝑃(𝑠, 𝑡) = 𝑝 + 𝑠𝑢 + 𝑡𝑣

https://stevejtrettel.site/code/2023/parametric-plane

What is the normal vector to a parametric plane? We know two vectors on the plane 𝑢
and 𝑣 , so their cross product must be orthogonal to the plane.
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4.3. Circles and Spheres

Theorem 4.4 (Normal to a Parametric Plane). If 𝑃(𝑠, 𝑡) = 𝑝 + 𝑠𝑢 + 𝑡𝑣 is a parametric
plane, the vector

𝑛 = 𝑢 × 𝑣
is a normal vector to it.

Exercise 4.1 (Implicit Equation from a Parametric Plane). Consider the following para-
metric plane:

𝑃(𝑠, 𝑡) = (12) + 𝑠 (−13 ) + 𝑠 (1, −1)

What is a point that it passes through? What is its normal vector? What’s an implicit
equation for this plane?

4.3. Circles and Spheres

Definition 4.6 (Circle). The circle 𝐶 of radius 𝑅 centered at a point 𝑝 in the plane is
the set of all points which lie at distance 𝑅 from 𝑝.

𝐶 = {𝑞 ∈ ℝ2 ∣ dist(𝑝, 𝑞) = 𝑅}

We can use the distance function on the plane to come up with an implicit formula for
the circle:

Theorem 4.5 (Implicit Circle in ℝ2). The circle of radius 𝑅 centered at 𝑝 = (𝑝𝑥 , 𝑝𝑦 ) is
given by the implicit equation

(𝑥 − 𝑝𝑥 )2 + (𝑦 − 𝑝𝑦 )2 = 𝑅2

Can we also find a parametric description of the circle? Using the trigonometric identity
cos2 𝜃 + sin2 𝜃 = 1, we see that if 𝑥 = cos 𝜃 and 𝑦 = sin 𝜃 then (𝑥, 𝑦) must lie on the unit
circle about the origin!

Theorem 4.6 (Parametric Unit Circle$). The unit circle centered at (0, 0) can be param-
eterized as

𝐶(𝑡) = (cos 𝑡
sin 𝑡 )

for 𝑡 ∈ [0, 2𝜋].
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4. Shapes

Translating and scaling this:

Theorem 4.7 (Parametric Circle in ℝ2). The circle of radius 𝑅 centered at 𝑝 = (𝑝𝑥 , 𝑝𝑦 ) is
given by the parametric equation

𝑅 𝐶(𝑡) + 𝑝 = (𝑅 cos 𝑡
𝑅 sin 𝑡 ) + (𝑝𝑥𝑝𝑦)

Definition 4.7 (Sphere). The sphere 𝑆 of radius 𝑅 centered at 𝑝 ∈ ℝ3 is the set of points
in 3-dimensional space that lie at distance 𝑅 from 𝑝:

𝑆 = {𝑞 ∈ ℝ3 ∣ dist(𝑝, 𝑞) = 𝑅}

Theorem 4.8 (Implicit Sphere in ℝ3). The sphere of radius 𝑅 centered at 𝑝 = (𝑝𝑥 , 𝑝𝑦 , 𝑝𝑧)
is given by the implicit equation

(𝑥 − 𝑝𝑥 )2 + (𝑦 − 𝑝𝑦 )2 + (𝑧 − 𝑝𝑧)2 = 𝑅2

It is also possible to make a parametric equation of a sphere. Since the surface of a
sphere is two dimensional we will need two parameters much like we did for planes.
The expression looks a bit complicated the first time you see it, and while we will not
need it until later in the course, it appears below for completeness.

Theorem 4.9 (Parametric Unit Sphere). The sphere of radius 1 centered at (0, 0, 0) can
be parameterized by

𝑆(𝑢, 𝑣) = (
cos(𝑢) sin(𝑣)
sin(𝑢) sin(𝑣)

cos(𝑣)
)

For 𝑢 ∈ [0, 2𝜋] and 𝑣 ∈ [0, 𝜋].

Below is a program illustrating the parameric unit sphere: the rectangle on the bottom
is the space of parameters (the 𝑢 − 𝑣 coordinates), and you can track the red, blue lies
and the black point between the inputs in the rectangle and the outputs in the sphere.

Try going into the menu and messing with the sliders under domain, to see what the
two different angles do.

https://stevejtrettel.site/code/2023/tangent-plane

Just as for the circle, we can take this parameterization for the unit sphere and use it to
find one for any sphere by scaling and translating it:
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4.4. Other Shapes

Theorem 4.10 (Parametric Sphere). The sphere of radius 𝑅 centered at 𝑝 = (𝑝𝑥 , 𝑝𝑦 , 𝑝𝑧)
is given by

𝑅 𝑆(𝑢, 𝑣) + 𝑝 = 𝑅(
cos(𝑢) sin(𝑣)
sin(𝑢) sin(𝑣)

cos(𝑣)
) + (

𝑝𝑥
𝑝𝑦
𝑝𝑧
)

4.4. Other Shapes

The equation 𝑥2 + 𝑦2 = 1 is the implicit equation for a circle in the plane. But what
shape does this determine in three dimensions?

Example 4.1 (Cylinder). A cylinder is a set of points in ℝ3 which project orthogonally
onto a circle in some plane. That is, a “stack of circles” along some axis.

The easiest examples are cylinders around coordinate axes: For example, 𝑥2 + 𝑦2 = 1
is a circle in ℝ2 but is a cylinder in ℝ3, as the 𝑥, 𝑦 coordinates make a circle but the 𝑧
coordinate is free to be anything.

Similarly, 𝑦2 + 𝑧2 = 4 is a circle of radius 2 around the 𝑥-axis.

Figure 4.1.: The cylinder 𝑥2 + 𝑦2 = 1 in ℝ3.

In general, the implicit equation of any 2-d shape can be used in 3 dimensions to describe
a “stack” of those two dimensional shapes along the direction of the variable that’s
missing from the formula.
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4. Shapes

Figure 4.2.: The parabolic cylinder 𝑦 = 𝑥2 in ℝ3.

Example 4.2. The equation 𝑦 = 𝑥2 traces out a Parabolic cylinder, that is, a stack of
parabolas in the 𝑧-direction.

Other shapes that will be useful are ellipsoids, which are squashed spheres:

Example 4.3 (Ellipsoid). An ellipsoid is given by the implicit equation

𝑥2
𝑎2 + 𝑦2

𝑏2 + 𝑧2
𝑐2 = 1

This is similar to the equation of an ellipse but with one more variable.

Example 4.4 (Paraboloid). Aparaboloid is the surface 𝑧 = 𝑥2+𝑦2, or a stretched version
𝑧 = 𝑎𝑥2 + 𝑏𝑦2 where 𝑎 and 𝑏 are positive. Its cross sections are circles (in the first case)
and ellipses (in the second).

Example 4.5 (Saddle). A saddle shaped surface, or hyperbolic paraboloid is a surface
of the form 𝑧 = 𝑥2 − 𝑦2 or a scaling of it. In this form, it has a cross section like a
upwards-facing parabola along the 𝑥 axis, and a downwards-facing parabola along the
𝑦 axis.
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4.4. Other Shapes

Figure 4.3.: The ellipsoid 𝑥2
2 + 𝑦2 + 𝑧2 = 1 in ℝ3.

Figure 4.4.: The paraboloid 𝑧 = 𝑥2 + 𝑦2 in ℝ3.
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4. Shapes

Figure 4.5.: The hyperbolic paraboloid 𝑧 = 𝑥2 − 𝑦2 in ℝ3.

4.4.1. Helpful Videos

A discussion of implicit vs parametric equations (the Calculus Blue series)

https://youtu.be/UuYXPaac7gU?si=f8AQSdcnkNORl8-1

Here’s some videos reviewing some of the techniques we learned in class: first, a couple
involving planes.

https://youtu.be/2sZKZHyaQJ8?si=Ld79HXRv12YfQaL2

https://youtu.be/rL9UXzZYYo4?si=6IwekLHYirpagr1Y

And secondly, a review of precalculus material on putting circle euqations into standard
form.

https://youtu.be/u_39J-syjB0?si=rJYGjMXPwy8W5eYe

Examples of quadratic surfaces

https://youtu.be/5y1bhGsYG8o?si=aYYIh8kOkN6b-KPn
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Part II.

Curves
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5. Parameterization

(Relevant Section of the Textbook: 13.1 Vector Functions and Space Curves)

Definition 5.1 (Plane Curve). A plane curve is a function 𝑐 ∶ ℝ → ℝ2. Written in the
coordinates (𝑥, 𝑦) of ℝ2, a plane curve can be expressed using two coordinate functions

𝑐(𝑡) = (𝑥(𝑡), 𝑦(𝑦))

We’ve seen examples of plane curves already, for instance parametric lines (like ℓ(𝑡) =
(2𝑡 − 1, 3𝑡 + 4)) and parametric circles, (like 𝑐(𝑡) = (2 cos(𝑡) + 1, 2 sin(𝑡) − 1)).

Definition 5.2 (Space Curve). A space curve is a function 𝑟 ∶ ℝ → ℝ3. Written in
the coordinates (𝑥, 𝑦 , 𝑧) of ℝ3, a spade curve can be expressed using three coordinate
functions

𝑐(𝑡) = (𝑥(𝑡), 𝑦(𝑦), 𝑧(𝑡))

https://stevejtrettel.site/code/2023/parametric-curve-animation

We see curves like this in everyday life - watching a bird fly through the air we see
its position changing in time, so its 𝑥, 𝑦 , and 𝑧 components are all chaninging in time
(𝑥(𝑡), 𝑦(𝑡), 𝑧(𝑡)). Likewise, watching your car driving on a GPS, we see the car’s posi-
tion changing - its latitude and longitude are functions of time car(𝑡) = (lat(𝑡), long(𝑡)).
Indeed this is how we usually will use plane and space curves to trace out positions as
a function of time. But it is also often useful to think of a curve as being traced out
by a little arrow based at the origin (the vector picture, vs the position picture). This
is particularly helpful when trying to build curves for yourself, as you can think about
adding on terms, scalar multiplication, etc.

Here’s a graphing calculator for curves, so you can try making some of your own. Can
you make this draw a circle in the 𝑦𝑧 plane?

https://stevejtrettel.site/code/2023/parametric-curve

Parametric curves are used in animation, physics, and engineering. In this visualization
below, each little blob is animated using a parametric curve: this could trace out a school
of fish swarming at sea, for instance.

https://stevejtrettel.site/code/2022/integral-curves
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5. Parameterization

5.1. Parameterization Tips

Studying the properties of parametric curves falls squarely within mathematics, and we
will spend much time soon developing the calculus to do so. But creating parametric
curves is more art than science: it really helps to build up some intution for a few basic
examples, and then learn how to combine them and modify them to produce new and
more interesting curves. I encourage you to follow along in the discussions below using
the graphing calculator at the top of the page.

Example 5.1 (Parametrizing The Graph of a Function). If 𝑦 = 𝑓 (𝑥) is a function, its
graph consists of the 𝑦 value 𝑓 (𝑥) whenever the 𝑥-value is 𝑥 . That means, the graph of
𝑓 consists of the points (𝑥, 𝑓 (𝑥)) in the plane. Expressed yet a third way, a parametric
equation that traces out the graph is given by

𝑐(𝑡) = (𝑡, 𝑓 (𝑡))

Recall that an implicit equation gives a relationship of 𝑦 and 𝑥 that are satisfied by an
equation. Some of these express functions like 𝑦 = 𝑥2, but others do not, for instance
𝑥2 + 𝑦2 = 1. Oftentimes given an implicit equation its desirable to parameterize it: to
find a way to trace out the curve as a function of 𝑡 . There’s no single way to do this, and
it often takes some trial and error. But some tips are below.

Example 5.2 (Parametrizing circles). The implicit equation for the unit circle is 𝑥2 +
𝑦2 = 1. Because the functions cos 𝑡 and sin 𝑡 satsify the equatio

cos2(𝑡) + sin2(𝑡) = 1

We see that if 𝑥 = cos(𝑡) and 𝑦 = sin(𝑡) then (𝑥, 𝑦) must lie on the unit circle. Similarly,
the equation 𝑓 (𝑡) = (𝑟 cos(𝑡), 𝑟 sin(𝑡)) parameterizes a circle of radius 𝑟 centered at (0, 0),
and

𝑓 (𝑡) = (𝑟 cos(𝑡) + ℎ, 𝑟 sin(𝑡) + 𝑘)
parameterizes a circle of radius 𝑟 centered at (ℎ, 𝑘).

Similar parameterizing an implicit plane curve by finding functions which satisfy the re-
lations, one can parameterize curves that are the intersection of two known surfaces.

Example 5.3. Parameterize the twisted cubic, lying on 𝑦 = 𝑥2 and 𝑧 = 𝑥3. Here if 𝑥 = 𝑡
then we know 𝑡 = 𝑡2 and 𝑧 = 𝑡3: this fully specifes a point in 3-dimensional space, so
we have our parameterization

𝑓 (𝑡) = (𝑡, 𝑡2, 𝑡3)
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5.1. Parameterization Tips

Example 5.4. Parameterize the intersection of the cylinder 𝑥2 + 𝑦2 = 3 and the plane
𝑥 + 𝑦 + 𝑧 = 1. On the cylinder, 𝑥 and 𝑦 both lie on a circle of radius √3: so we can
write 𝑥 = √3 cos(𝑡) and 𝑦 = √3 sin(𝑡). The cylinder equation doesn’t tell us anything
about 𝑧, so its no help there. But - we can solve the plane for 𝑧 in terms of 𝑥 and 𝑦
to get 𝑧 = 1 − 𝑥 − 𝑦 . Now we can plug in what we know 𝑥 and 𝑦 to be to get the
parameterization:

𝛾 (𝑡) = (√3 cos(𝑡), √3 sin(𝑡), 1 − √3 cos(𝑡), √3 sin(𝑡))

Example 5.5. Intersection of 4𝑦 = 𝑥2 + 𝑧2 and 𝑦 = 𝑥 . We know already because 𝑦 = 𝑥
that our points in space are going to look like (𝑥, 𝑥, 𝑧). We can substitute this idea into
the first equation to see that 4𝑦 becoes 4𝑥 , and so

𝑥2 − 4𝑥 + 𝑧2 = 0
This is the equation for a circle! We can find its center and radius by completing the
square:

𝑥2 − 4𝑥 = 𝑥2 − 4𝑥 + 4 − 4 = (𝑥 − 2𝑥)2 − 4
So, this is the circle

(𝑥 − 2)2 + 𝑧2 = 4
Which is a circle of radius 2 centered at (2, 0). We can parameterize it as 𝑥 = 2 cos(𝑡)+2
and 𝑧 = 2 sin(𝑡). So, in 3D along the plane 𝑦 = 𝑥 this becomes

𝑓 (𝑡) = (2 cos(𝑡) + 2, 2 cos(𝑡) + 2, 2 sin(𝑡))

5.1.1. Same Curve, Different Parameterizations

Different parameterizations can describe the same curve: since a parameterization is
like an animation of the curve, you can think of this as tracing out the curve at different
speeds.

Example 5.6 (Different Parameterizations of the Circle). All three of these parametric
curves trace out the unit circle.

(cos 𝑡 , sin 𝑡)
(cos 2𝑡, sin 2𝑡)
(cos 𝑡 , − sin 𝑡)

The first traces it at unit speed, counterclockwise. The second at twice the speed in the
same direction. And the third, at unit speed but backwards (clockwise).
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5. Parameterization

Example 5.7 (Different Parameterizations of 𝑦2 = 𝑥3). We can parameterize the im-
plicit curve 𝑦2 = 𝑥3 in several ways: taking the square root of both sides gives 𝑦 as a
function of 𝑥 (with a plus and minus component), 𝑦 = ±√𝑥3 so one possible parameter-
ization is

𝛼(𝑡) = (𝑡, ±√𝑡3)
This isn’t the nicest, as we have that ± sign. Another thing we could do is take the cube
root: this doesn’t cause any ± ambiguity, and gives 𝑥 as a function of 𝑦 , or 𝑥 = 3√𝑦2,
leading to the parametric curve

𝛽(𝑡) = ( 3√𝑡2, 𝑡)
A third option is to find a function for 𝑥(𝑡) where when we cube it, we get the same
thing as if we squared the function we chose for 𝑦(𝑡). This is of course tricker - but here
one option is to take 𝑥 = 𝑡2 and 𝑦 = 𝑡3. Then 𝑥3 = 𝑡6 and 𝑦2 = 𝑡6 so 𝑥3 = 𝑦2 and our
curve is

𝛾 (𝑡) = (𝑡2, 𝑡3)

5.1.2. New Curves from Old

Once we know a few parametric curves (circles, lines, some implicit curves, etc) - its
easy to find more by modifying the ones we already know! Some of the simplest such
tranfsormations we’ve already used in the case of circles, scaling and translation.

Theorem 5.1 (Scaling a Parametric Curve). If 𝑓 (𝑡) = (𝑥(𝑡), 𝑦(𝑡)) is a parametric curve,
then 𝑟𝑓 (𝑡) = (𝑟𝑥(𝑡), 𝑟𝑦(𝑡)) is a curve where all the coordinates are 𝑟 times a big.

Theorem 5.2 (Translating a Parametric Curve). If 𝑓 (𝑡) = (𝑥(𝑡), 𝑦(𝑡)) is a parametric
curve, then 𝑓 (𝑡)+ (𝑎, 𝑏) = (𝑥(𝑡)+ 𝑎, 𝑦(𝑡)+ 𝑏) is the result of shifting the curve over by (𝑎, 𝑏).

Of course, more interesting transformations are also possible - and it’s easiest to see
this through a couple examples!

5.2. Case Study: Spirals

We will make and understand a collection of spirals starting with the basic equation of
the unit circle

(cos(𝑡), sin(𝑡))
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5.2. Case Study: Spirals

Example 5.8 (Archimedean Spiral). The archimedean spiral is the curve that rotates
about the origin at unit speed, but after rotating angle 𝑡 , lies not at unit distane (like a
circle) but at distance 𝑡 from the origin. To parameterize, we multiply the circle by 𝑡 :

𝛾 (𝑡) = (𝑡 cos(𝑡), 𝑡 sin(𝑡))

Example 5.9 (Logarithmic Spiral). The logarithmic spiral moves away from the origin
exponentially fast, instead of linearly. This has radius at time 𝑡 equal to 𝑒𝑡 , so

𝛾 (𝑡) = (𝑒𝑡 cos(𝑡), 𝑒𝑡 sin(𝑡))

Different functions 𝑟(𝑡) for the radius multiplied by the circle give spirals that move
outwards (or inwards) at different speeds. Try making some of these in the graphing
calculator above!

Exercise 5.1 (Whirlpool). Can you make a spiral that rotates about the origin at unit
speed, but whose radius asymptotes to 2, never getting any larger?

Example 5.10 (Helix). A helix is a curve where 𝑥, 𝑦 travel around a circle, and 𝑧 in-
creases at unit speed. For example, the unit helix is

𝛾 (𝑡) = (cos(𝑡), sin(𝑡), 𝑡)

Example 5.11 (Slinky-LikeHelix). What if wewant a helix like curve tomove vertically
at an uneven rate? Replace the 𝑧 component with a more interesting function of 𝑡! For
instance, if 𝑧 = 𝑒𝑡 then the curve bunches up as 𝑡 → −∞ along the 𝑥𝑦 plane:

𝛾 (𝑡) = (cos(𝑡), sin(𝑡), 𝑒𝑡)

Example 5.12 (Spiral On a Cone). The surface 𝑧 = √𝑥2 + 𝑦2 traces out a cone - the
height is equal to the radius! How can we draw a spiral on the surface of the cone? Well,
if we know what we want the spiral to do in its 𝑥 and 𝑦 components, we can calculate
the 𝑧 component using the formual above! For instance, given the archimedean spiral
(𝑡 cos(𝑡), 𝑡 sin(𝑡)) we see 𝑧 = √(𝑡 cos 𝑡)2 + (𝑡 sin 𝑡)2 = 𝑡 . Thus, the curve is

𝛾 (𝑡) = (𝑡 cos 𝑡 , 𝑡 sin 𝑡 , 𝑡)
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5. Parameterization

5.3. Videos

A recap of parametric curves

https://youtu.be/bb4bSCjlFAw?si=3cHJuYIJvD9N6VuD

Parametric curves and elimination of parameters:

https://youtu.be/97pe-QlSGqA?si=pKIz2u9f3an3fPC3
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6. Calculus

(Relevant Section of the Textbook: 13.2 Derivatives and Integrals of Vector
Functions)

A parametric curve is made of 𝑛 component functions, which are familiar functions
ℝ → ℝ from single variable calculus. Thus, the calculus of curves is simply doing the
calculus of single variable functions 𝑛 times!

6.1. Limits

Taking limits of a parametric curve is just taking the limit of each component func-
tion.

Definition 6.1 (Limits of Parametric Curves). If 𝑟(𝑡) = (𝑥(𝑡), 𝑦(𝑡), 𝑧(𝑡)) is a parametric
curve, then limits are computed componentwise:

lim𝑡→𝑎 𝑟(𝑡) = (lim𝑡→𝑎 𝑥(𝑡), lim𝑡→𝑎 𝑦(𝑡), lim𝑡→𝑎 𝑧(𝑡))

Example 6.1 (Limits of Parametric Curves). Let 𝑟(𝑡) be the following parametric curve

𝑟(𝑡) = ⟨ 1
𝑡 + 1 ,

sin(𝑡)
𝑡 , 3𝑡 + 𝑡2

𝑡 ⟩

Compute the limit lim𝑡→0 𝑟(𝑡).
Computing the limit componentwise we see we just need to evaluate three limits:

lim𝑡→0
1

𝑡 + 1

lim𝑡→0
sin(𝑡)
𝑡

lim𝑡→0
3𝑡 + 𝑡2

𝑡
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6. Calculus

The first of these is continuous at zero so we can just plug in. THe second need
L’Hospital’s rule, and the third needs us to cancel a 𝑡 from the numerator and
denominator before plugging in, to get

lim𝑡→0 𝑟(𝑡) = ⟨1, 1, 3⟩

6.2. Differentiation

Recall the single variable definition of the derivative:

𝑓 ′(𝑡) = limℎ→0
𝑓 (𝑡 + ℎ) − 𝑓 (𝑡)

ℎ
The same definition works for parametric curves:

Definition 6.2 (Differentiating Curves). The derivative of a parametric curve 𝑟(𝑡) at a
point 𝑡 is given by the following limit:

limℎ→0
𝑟(𝑡 + ℎ) − 𝑟(𝑡)

ℎ

The numerator here is a vector, which gets infinitesimally small as ℎ → 0, connecting
two closer and closer together points of the curve. We then rescale this vector with
scalar multiplication, dividng by ℎ to keep the vector’s length from collapsing. In the
limit, this converges to a vector 𝑟 ′(𝑡) which is tangent to the curve.

https://stevejtrettel.site/code/2023/parametric-curve-tangent

However, we don’t need to calculate the derivative using this limit statement every time!
We can use the fact that limits distribute over the components of the function to prove
that we can also take the derivative one component at a time.

Theorem 6.1 (Differentiating Curves Componentwise). If 𝑟(𝑡) = (𝑥(𝑡), 𝑦(𝑡), 𝑧(𝑡)) is a
parametric curve, then

𝑟′(𝑡) = ⟨𝑥′(𝑡), 𝑦 ′(𝑡), 𝑧′(𝑡)⟩

Because of this, its straightforward to show that differenatiation of vector functions
obeys the familiar laws of single variable calculus: you can break it up over sums, and
pull out scalars. But now there are three types of products (do we multiply the vector
function by a scalar function, or dot or cross product it with another vector?)
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6.2. Differentiation

Theorem 6.2 (Differentiation Product Laws).

(𝑓 (𝑡)𝑟(𝑡))′ = 𝑓 ′(𝑡)𝑟(𝑡) + 𝑓 (𝑡)𝑟′(𝑡)
(𝑐(𝑡) ⋅ 𝑟(𝑡))′ = 𝑐′(𝑡) ⋅ 𝑟(𝑡) + 𝑐(𝑡) ⋅ 𝑟′(𝑡)
(𝑐(𝑡) × 𝑟(𝑡))′ = 𝑐′(𝑡) × 𝑟(𝑡) + 𝑐(𝑡) × 𝑟′(𝑡)

There is also a chain rule: we can’t compose a vector function inside another vector
function, but we can plug a scalar function in as the parameter in a curve!

Theorem 6.3 (The chain rule).

(𝑟(𝑓 (𝑡)))′ = 𝑟 ′(𝑓 (𝑡))𝑓 ′(𝑡)

You probably notice a similarity to the single variable calculus versions in all of these:
they’re as close as possible, except now being about vector functions! But these simple
looking rules actually provide us a new powerful set of tools, they tell us about the rate
of change at the same time as dot and cross products - which we know can measure
areas and angles!

As one quick example, we’ll prove a very useful fact about curves defined by vectors of
constant length.

Theorem 6.4 (Curves on the Sphere). If a curve 𝑟(𝑡) never changes in length, so ‖𝑟(𝑡)‖ = 𝑘
for all time, then 𝑟′ is orthogonal to 𝑟 .

Proof. Since the magnitude of a vector can be calculated from its dot product, we see
that

𝑟 ⋅ 𝑟 = 𝑘2
Taking the derivative of this with the product rule, we find

𝑟 ′ ⋅ 𝑟 + 𝑟 ⋅ 𝑟′ = 0

The dot product is commutative (order doesnt matter) so we can re-arrange the left hand
side:

2𝑟 ⋅ 𝑟′ = 0

But dividng by two - this says that the dot product of 𝑟 and 𝑟′ is zero! So these two
vectors are orthogonal.
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6. Calculus

6.3. Integration

The story of vector valued integration is similarly straightforward. Recall the definition
of integration via Riemann sum:

∫
𝑏

𝑎
𝑓 (𝑥)𝑑𝑥 = lim𝑁→∞

𝑁
∑
𝑖=1

𝑓 (𝑥𝑖)Δ𝑥

We can apply the same definition to vector valued functions, as its composed of just the
operations of addition and scalar multiplication!

Definition 6.3 (Integrating Curves). If 𝑟 is a parametric curve, its vector valued integral
on the interval [𝑎, 𝑏] is defined by the following Riemann sum:

∫
𝑏

𝑎
𝑟(𝑡)𝑑𝑡 = lim𝑁→∞

𝑁
∑
𝑖=1

𝑟(𝑡𝑖)Δ𝑡

But wait! Both scalar multiplication and addition are things we can do componentwise
for a vector. So we can break this big Riemann sum up into a standard riemann sum
in each component. Taking the limit, this tells us we can integrate vector functions
componentwise.

Theorem 6.5 (Integrating Curves Componentwise). If 𝑟(𝑡) = ⟨𝑥(𝑡), 𝑦(𝑡), 𝑧(𝑡)⟩, the vector
valued integral of 𝑟 on [𝑎, 𝑏] is given by

∫
𝑏

𝑎
𝑟(𝑡)𝑑𝑡 = ⟨∫

𝑏

𝑎
𝑥(𝑡)𝑑𝑡, ∫

𝑏

𝑎
𝑦(𝑡)𝑑𝑡, ∫

𝑏

𝑎
𝑧(𝑡)𝑑𝑡⟩

We will only find limited use of this in our class, as there are other types of integrals
along curves that will prove more important. Nonetheless this does show up in many
applications of multivariable calculus to engineering and physics, where one may wish
to recover position from velocity, or velocity from acceleration.

Example 6.2 (Displacement from Veloicty). If 𝑣(𝑡) is a parametric curve giving the

velocity of a particle at time 𝑡 , then ∫𝑏𝑎 𝑣(𝑡)𝑑𝑡 is teh displacement vector for its net travel
between 𝑡 = 𝑎 and 𝑡 = 𝑏.
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6.4. Videos

Figure 6.1.: The displacement (yellow vector) can be calculated by integrating the veloc-
ity vectors (blue) even if we do not know the parametric curve itself (red).

The same is true for acceleration: all of our phones have a sensor inside called a three
axis accelerometer. These measure the acceleration as a function of time

𝑎(𝑡) = ⟨𝑎𝑥 (𝑡), 𝑎𝑦 (𝑡), 𝑎𝑧(𝑡)⟩

But this is not what software running on the phone wants or needs: it cares about your
position in space! (Say, if you’re using your phone in augmented reality). To get this,
it integrates the acceleration to get velocity, and then integrates again the veloctity to
get position! P For any engineers in the class - if you have accelerometers in the Hive:
this could be a fun project to code up! Write a small python program to numerically
integrate (ie compute a Riemann sum) from the output data of an accelerometer, and
track your hand’s position as you move it around.

6.4. Videos

Calculus Blue series on calculus of curves:

https://youtu.be/8WzHSgE0Kus?si=D217ouCNQBLxRsI9

Here are some videos practicing the concepts that we have done examples of in lecture.
First, limits of vector functions.
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6. Calculus

https://youtu.be/bhP9cfB90Kc?si=pS7CeIkhktSTijRu

Next, derivatives of vector functions.

https://youtu.be/i9FugTcqWKo?si=p7BoWwVic8-6d-Wu

https://youtu.be/vcwvzUVLPw0?si=mtZpSwCJVJ5Gu5gi

And the proofs of the differentiation laws for the dot product and cross product:

https://youtu.be/fbzEYaYOgfo?si=9aw3IktC0ciLq_Dp

https://youtu.be/vykDXI9OjDM?si=3zDR8TnwSPPSsP9

Also, integrating vector functions.

https://youtu.be/RsGuE5OZqMg?si=onfxxJTYYrVZ5dTu
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7. Geometry

(Relevant Section of the Textbook: 13.3 Arc Length and Curvature)

7.1. Arc Length

Definition 7.1 (Infinitesimal Arclength). If 𝑟(𝑡) is a parametric curve, its infinitesimal
arclength is measured by

𝑑𝑠 = |𝑟′(𝑡)| 𝑑𝑡

This makes sense: after all the derivative 𝑟 ′(𝑡) is the velocity, ‖𝑟′(𝑡)‖ is the speed, and 𝑑𝑡
is an infinitesimal length of time. Thus, the product ‖𝑟′(𝑡)‖𝑑𝑡 is an infinitesimal bit of
distance - a small length along the curve. To take this infinitesimal information and get
something useful out - we need to integrate along the curve.

Definition 7.2 (Arclength). If 𝑟(𝑡) is a parametric curve, its length between 𝑡 = 𝑎 and
𝑡 = 𝑏 is given by

𝐿 = ∫
𝑏

𝑎
𝑑𝑠 = ∫

𝑏

𝑎
|𝑟′(𝑡)|𝑑𝑡

Example 7.1 (Arclength of a Helix). Find the arclength of 𝑟(𝑡) = (cos(𝑡), sin(𝑡), 𝑡) from
𝑡 = 0 to 𝑡 = 2𝜋 . First, we need to find the velocity 𝑟 ′:

𝑟 ′(𝑡) = ⟨− sin(𝑡), cos(𝑡), 1⟩

Next, we need to take this velocity and find the speed:

‖𝑟′(𝑡)‖ = √(− sin 𝑡)2 + (cos 𝑡)2 + 1 = √2

Finding arclenght is just integrating this over the domain:

∫
2𝜋

0
‖𝑣𝑒𝑐𝑟 ′(𝑡)‖𝑑𝑡 = ∫

2𝜋

0
√2𝑑𝑡 = 2𝜋√2
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7. Geometry

Often arclength integrals can be challenging to do, because of the square root. But with
some algebra and integration tricks, alot can be learned.

From this idea, we can define the arclength function whcih measures the length of a
curve 𝑟(𝑡) from a starting point 𝑡 = 𝑎:

Definition 7.3 (The Arclength Function). If 𝑟(𝑡) is a parametric curve, for any given
starting point 𝑡 = 𝑎 we may define the arclength function which measures the length of
curve between 𝑎 and 𝑡 :

𝑠(𝑡) = ∫
𝑡

𝑎
|𝑟 ′(𝑢)|𝑑𝑢

(Note we have changed the variable of integration so that 𝑡 is not used in two different
contexts)

What is the arclength function for the helix in our earlier example, starting from 𝑡 = 0?
Since ‖𝑟′(𝑡)‖ = √2, we see that

𝑠(𝑡) = ∫
𝑡

0
√2𝑑𝑡 = √2𝑡

This tells us that after 𝑡 seconds, we have traced out √2𝑡 units of arclength. How could
we reparameterize this curve so that its arclength function is just 𝑠(𝑡) = 𝑡 (tracing out 𝑡
units of arc in 𝑡 units of time)?

Definition 7.4 (Unit Speed Curve). A curve 𝑐(𝑡) is unit speed if ‖𝑐′(𝑡)‖ = 1 for all times
𝑡 . This means that it after 𝑡 seconds, the curve has traversed 𝑡 units of length. For this
reason, we also call unit speed curves arclength parameterized curves.

In our example, to make the helix unit speed we need to slow it down by a factor of √2:
that is, we need 𝑟(𝑡/√2):

𝑟 ( 𝑡
√2

) = (cos 𝑡
√2

, sin 𝑡
√2

, 𝑡
√2

)
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7.2. Curvature

7.2. Curvature

Besides the length of a curve, one of the most powerful things calculus allows us to
do is rigorously study its curvature. How can we quantify the fact that some curves
bend gently and others turn sharply in space? One means of trying to do this is by
looking at the tangent vectors to the curve, and trying to determing how quickly they
are changing.

Of course, there’s a complication to this: a tangent vector can change in length without
changing in direction. This doesn’t mean that a curve is curving, but rather that the
particle tracing it out is accelerating.

To remove this worry, we define the unit tangent vector to a curve. Just divide the
derivative by its magnitude!

Definition 7.5 (Unit Tangent Vector). The unit tangent vector to the curve 𝑟(𝑡) is the
vector of length 1 which is parallel to 𝑟′(𝑡):

𝑇 (𝑡) = 𝑟′(𝑡)
|𝑟′(𝑡)|

https://stevejtrettel.site/code/2023/parametric-curve-tangent

This allows a clean definition of curvature: it is howmuch the unit tangent vector turns
per arclength.

Definition 7.6 (Curvature of a Curve). The curvature of a curve is

𝜅 = |𝑑𝑇𝑑𝑠 | = |𝑇 ′(𝑡)|/ |𝑟′(𝑡)|

Where the second equality is derived via the chain rule:

| 𝑑𝑇𝑑𝑠 | = |𝑑𝑇𝑑𝑡
𝑑𝑡
𝑑𝑠 | = |

𝑑𝑇
𝑑𝑡
𝑑𝑠
𝑑𝑡
| =

|𝑇 ′|
|𝑟′|

This formula is difficult to apply in genreral, as the unit tangent vector 𝑇 might have a
pretty scary looking formula, and so taking its derivative can be a lot of work.
Doing some calculus we can get a simpler formula:
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Theorem 7.1 (Curvature of a Curve). The curvature of 𝑟(𝑡) is given by

𝜅(𝑡) = |𝑟 ′(𝑡) × 𝑟′′(𝑡)|
|𝑟 ′(𝑡)|3

This is something that’s relatively easy to compute (though perhaps tedious) from any
parameterization: you just need to find the first and second derivatives, take a cross
product, and then plug into the formula!

But, if we further restrict ourselves to the case that 𝑟(𝑡) = (𝑡, 𝑓 (𝑡)) traces the graph of a
function, we can simplify this calculation even more:

Theorem 7.2 (Curvature of a Graph). If 𝑦 = 𝑓 (𝑥) is a function, the curvature of its graph
is

𝜅(𝑥) = |𝑓 ′′(𝑥)|
|1 + 𝑓 ′(𝑥)|3/2

The below graphing calculator lets you entere a function 𝜅(𝑠) that specifies the curvature
of a curve, and then it computes a curve which has that curvature! Try even just the
case 𝑘(𝑠) = 𝑠 and think about the result - what sort of curve do you expect to see if the
curvature grows linearly along the length of the curve?

https://stevejtrettel.site/code/2022/curvature-torsion

7.3. Framing a Curve

The unit tangent vector provides us with a very useful “pointer” - always oriented di-
rectly along a curve. But in any serious application of parametric curves, we need more
information: wewould like a whole 𝑥, 𝑦 , 𝑧 coordinate frame at each point of the curve.

To start, we’ll look for one vector which is orthogonal to, or normal to our curve.
How can we find one? Well, the unit tangent is of constant length (its the unit tangent,
after all). We can use the product rule for dot products to understand 𝑇 ′:

(𝑇 ⋅ 𝑇 ) = 1 ⟹ (𝑇 ⋅ 𝑇 )′ = 0
(𝑇 ⋅ 𝑇 )′ = 𝑇 ′ ⋅ 𝑇 + 𝑇 ⋅ 𝑇 ′ = 2𝑇 ⋅ 𝑇 ′

Thus, we see that 2𝑇 ⋅ 𝑇 ′ = 0, so 𝑇 is orthogonal to 𝑇 ′!. To find a unit vector orthogonal
to 𝑇 , we just need to normalize 𝑇 ′.
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7.4. Videos

Definition 7.7 (Normal Vector).

�⃗� (𝑡) = 𝑇 ′(𝑡)
|𝑇 ′(𝑡)|

Given these two, its easy to find a third unit vector: just take the cross product of 𝑇 and
𝑁 ! The result is called the binormal as its a second normal vector to the curve.

Definition 7.8 (Binormal Vector).

𝐵(𝑡) = 𝑇 (𝑡) × �⃗� (𝑡)

Together these three vectors provide a coordinate system at each point along the curve:
𝑇 measures distance in the tangent direction to the curve, 𝑁 measures distance in the
direction the curve is bending fastest, and 𝐵 is orthogonal to both. This collection of
vectors is called the Frenet Frame and is heavily used in computations in physics, engi-
neering, and computer graphics.

Definition 7.9 (Frenet Frame).

𝑇 (𝑡) = 𝑟 ′(𝑡)
|𝑟′(𝑡) �⃗� (𝑡) = 𝑇 ′(𝑡)

|𝑇 ′(𝑡)|
𝐵(𝑡) = 𝑇 (𝑡) × �⃗� (𝑡)

https://stevejtrettel.site/code/2023/frenet-frame

7.4. Videos

Here are some useful videos reviewing the sort of examples that we have covered in
class:

7.4.0.1. Arclength of Curves

https://youtu.be/TAQPEP9pEhw?si=EIy61FdfPevHZnR0

https://youtu.be/TZJ2btou8_c?si=XjVF1w0CfbcgxXKC

https://youtu.be/X3AAltBz0wo?si=mcKCWeQMpjjz5aO0

Parameterizing a curve with respect to arclength (a unit speed parameterization)

https://www.youtube.com/watch?v=O3nnibgLCCc
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7. Geometry

7.4.0.2. Unit Tangents and Normals

https://youtu.be/mDUpR1_Qn70?si=RSlHcXX9-1elKMOr

The calculus Blue series on Tangent, Normal and Curvature:

https://youtu.be/qfE2nTaLxD8?si=zbJ_cAFGtVTYEu6z

The binormal vector and the Frenet Frame:

https://youtu.be/VkqTYPq8dX4?si=c0t_GzVKFVwF3dn8

7.4.0.3. Curvature

https://youtu.be/NlcvU67YWpQ?si=ImoRnmwFO0ALQC1R

An application of this: finding the point on a curve where it is maximally curved (say,
you wanted to find the sharpest bend of a roller coaster)

https://youtu.be/qpbFlhDbKwI?si=8IhMtdnVH7kZ_MAh
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8. Differential Equations

(Relevant Section of the Textbook: Only a portion of 13.4: Motion in Space,
Velocity and Acceleration. Not the whole section)

One of the most striking uses for the theory of paramteric curves is in describing the
world around us. Indeed the original inventions of calculus, parametric curves, and
modern physics all can be traced to the same source: Issac Newton and his desire to
predict the future. Newton’s big insight was that this lofty goal could be converted into
something concrete: the study of differential equations of parametric curves.

8.1. Projectile Motion

If I drop an apple from my hand above the ground, what will it do next? Can I predict
the future using some mathematical regularities of nature? Of course - I can predict it
qualitatively- the apple will fall. But this isn’t what we (or Newton) are after. We seek
an exact prediction - of exactly where the apple will be at every point in time after we
drop it.

Finding such a prediction sounds daunting indeed: but the first step towards a solution
is to realize that what we are after - the exact location (𝑥, 𝑦 , 𝑧) of the apple at each time
- is a parametric curve!

apple(𝑡) = (𝑥(𝑡), 𝑦(𝑡), 𝑧(𝑡))

[The three words that I’ve never managed to spell correctly are business, necessary, and
*Gall] Thus, we seek a method of determining 𝑥, 𝑦 and 𝑧 as functions of 𝑡 . Of course
this is the hard part! We need something to grab on to: and luckily, the key insight was
already discovered by Galileo nearly 500 years ago.

Every object accelerates downwards by the same amount, regardless of what its
made of or how big it is

The story usually goes that this was discovered by dropping items from the Leaning
Tower of Pisa - but Galileo actually did something much more precise, rolling objects
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down ramps of various slopes and measuring their positions over time consistently by
counting heartbeats. In the end, we learned that the acceleration vector of our curve can
be written

𝑎 = ⟨0, 0, −𝑔⟩

Where 𝑔 is a constant (the amount that gravity accelerates things: here on earth its
9.8 in metric units). It’s in the 𝑧 component as gravity acts vertically, and its negative
because gravity accelerates downwards.

And it is in this humble equation that all of kinematics lies. We can fully derive the posi-
tion 𝑝(𝑡) of our apple at any future time from this, and calculus. Remember, acceleration
is the second derivative of position, so really

𝑎 = ⟨𝑥′′(𝑡), 𝑦 ′′(𝑡), 𝑧′′(𝑡)⟩

Equating this to the vector ⟨0, 0, −𝑔⟩ gives us a system of three differential equations one
for each of our mystery functions 𝑥, 𝑦 , 𝑧. And we can solve these! Starting with 𝑥 , we
start wtih 𝑥′′(𝑡), so we integrate once to get rid of one derivative:

𝑥′(𝑡) = ∫ 𝑥′′(𝑡)𝑑𝑡 = ∫ 0 𝑑𝑡 = 𝐶

Where 𝐶 is a constant of integration. But since 𝑥′ measures velocity in the 𝑥 direction,
this is saying that the 𝑥-velocity is constant in time and is equal to 𝐶 . Thus we should
probably rename this constant easier to interpret: let’s call it 𝑣𝑥 . Thus we know 𝑥′(𝑡) =
𝑣𝑥 , and to get 𝑥 we integrate once more:

𝑥(𝑡) = ∫ 𝑥′(𝑡) 𝑑𝑡 = ∫ 𝑣𝑥𝑑𝑡 = 𝑣𝑥 𝑡 + 𝐶

Where again 𝐶 is a constant of integration. Here we see that at time 𝑡 = 0 we have
𝑥(𝑡) = 𝐶 , so this constant actually tells us the initial position so we should rename it
something more memorable too, let’s go with 𝑥0. This is the entire equation for 𝑥 :

𝑥(𝑡) = 𝑣𝑥 𝑡 + 𝑥0

And since 𝑦 has the same differential equation 𝑦 ′′(𝑡) = 0, we know it will have a similar
solution

𝑦(𝑡) = 𝑣𝑦 𝑡 + 𝑦0
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This leaves us only to sovle the 𝑧-equation 𝑧′′(𝑡) = −𝑔. Again, we integrate twice

𝑧′(𝑡) = ∫ 𝑧′′(𝑡) 𝑑𝑡 = ∫(−𝑔) 𝑑𝑡 = −𝑔𝑡 + 𝑣𝑧
Where here we’ve already named the constant something useful since we know that it
represents the initial velocity in the z-direction. Integrating again,

𝑧(𝑡) = ∫ 𝑧′(𝑡)𝑑𝑡 = ∫−𝑔𝑡 + 𝑣𝑧 𝑑𝑡 = −1
2 𝑔𝑡2 + 𝑣𝑧 𝑡 + 𝑧0

But now we know all of 𝑥, 𝑦 , 𝑧 in terms of six constants: three velocities 𝑣𝑥 , 𝑣𝑦 , 𝑣𝑧 speci-
fying how fast the apple is moving when we let go at 𝑡 = 0, and three positions 𝑥0, 𝑦0, 𝑧0
specifying where the apple is at 𝑡 = 0. From here, everything is completely deter-
mined

apple(𝑡) = (
𝑣𝑥 𝑡 + 𝑥0
𝑣𝑦 𝑡 + 𝑦0−1

2 𝑔𝑡2 + 𝑣𝑧 𝑡 + 𝑧0
)

All of these formulas from early physics courses are really just the simple vector equa-
tion 𝑎 = ⟨0, 0, −𝑔⟩ unpacked.

8.2. Universal Gravitation

Newton built a grand new theory of gravitation that realizes the above story as a mere
approximation occuring near the Earth’s surface. Newton describes all of mechanics in
terms of forces, where we can use a force to figure out acceleration via Newton’s law
setting them proportional:

𝐹 = 𝑚𝑎

8.2.1. Deriving Newton’s Gravitational Law

Newton conjectured a behavior for the force law of gravity between a two masses, say
of size 𝑚 and 𝑀 to work as follows: the force on the mass 𝑚 has

• Its direction points from the location of mass 𝑚 to the location of mass 𝑀 .
• Its magnitude is propotional to the product of the masses 𝑀𝑚
• Its magnitude is inversely proportional to the distance between the masses.
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Can we turn these ideas into a concrete formula using our knowledge of vectors and
operations? First, let’s set up our coordinates 𝑥, 𝑦 , 𝑧 in space. Let’s put one of our
masses - say 𝑀 at the point (0, 0, 0) because that’s easy to work with. Then our goal is
to compute the force at the point 𝑚: we don’t know where 𝑚 is relative to𝑀 , so we can
just call its location 𝑟 = (𝑥, 𝑦 , 𝑧).
The direction of a vector is usually specified by giving a unit vector - so we need to
describe the unit vector pointing from (𝑥, 𝑦 , 𝑧) to the origin. We know how to find a
vector from one point to another: its ending point minus starting point:

end − start = (0, 0, 0) − (𝑥, 𝑦 , 𝑧) = (−𝑥, −𝑦, −𝑧) = −𝑟

Now to make this a unit vector, we divide by its length:

⃗‖𝑟‖ = √𝑥2 + 𝑦2 + 𝑧2

So finally we get the unit vector �̂� pointing from 𝑚 to 𝑀 is

�̂� = −𝑟
‖𝑟‖

Now we need to deal with the magnitude. Here Newton says that we know two things:
the magnitude is proportional to the product 𝑀𝑚, and its inversely proportional to the
square of the distance between the masses. How do we write down the square of the
distance? Well, 𝑟 is a vector reaching from (0, 0, 0) to (𝑥, 𝑦 , 𝑧) so its length is the distance
between 𝑀 and 𝑚: thus the distance squared is

‖𝑟 ‖2 = 𝑥2 + 𝑦2 + 𝑧2

Thus, whatever the force vector 𝐹 is, we know its magnitude is proportional to𝑀𝑚/‖𝑟‖2:
this means there’s some constant 𝐺 for which

‖𝐹 ‖ = 𝐺𝑀𝑚
‖𝑟2‖

But now we are done! We know both the magnitude and direction of 𝐹 , so we can
directly write down a vector 𝐹 satisfying Newton’s requirements:

𝐹 = (𝐺𝑀𝑚
‖𝑟‖2 ) �̂� = (𝐺𝑀𝑚

‖𝑟‖2 ) −𝑟
‖𝑟‖
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We can simplify this a bit by combining the three factors of ‖𝑟‖we see in the denominator,
and expand it out by plugging in 𝑟 = (𝑥, 𝑦 , 𝑧) if we like:

𝐹 = −𝐺𝑀𝑚
‖𝑟‖3 𝑟

= −𝐺𝑀𝑚
(𝑥2 + 𝑦2 + 𝑧2)3/2 ⟨𝑥, 𝑦 , 𝑧⟩

Combining this with 𝐹 = 𝑚𝑎 we see that the two small 𝑚’s cancel: this is exactly
Galileo’s insight that the mass of the falling body doesn’t affect its motion!

𝑎 = −𝐺𝑀
‖𝑟‖3/2 𝑟

Which, when expanded out in 𝑥, 𝑦 , 𝑧 gives a more complicated set of equations than
we’ve dealt with so far:

(
𝑥′′
𝑦 ′′
𝑧′′

) = −𝐺𝑀
(𝑥2 + 𝑦2 + 𝑧2)3/2 (

𝑥
𝑦
𝑧
)

This set of equations is much harder to solve than our earlier case, where we approxi-
mated that the earth was so big andwewere so close that we could treat the acceleration
as only occuring in one direction. Here, the 𝑥, 𝑦 , and 𝑧 all show up in all of the equa-
tions! It was an incredible triumph of Newton to actually solve these, and show that
planets orbit the sun on Ellipses - a fact that had been known since Kepler from obser-
vation, but had no theroetical understanding. Look in our textbook, in the last section
of Chapter 13, for a rather in-depth treatment of this!

Here I do not want to try and actually sovle this system, but rather showcase another
technique - sometimes its possible to partially guess a solution, and then use an equation
to fix things up until it works!

8.2.2. The Length of a Year

Imagining a physical system like the earth orbiting the sun - we know that our particlar
orbit isn’t perfectly circular, but it sure is close! This might make us wonder “are there
any perfectly circular orbits”? Let’s put our circle in the 𝑥𝑦 plane, so 𝑧 = 0. If the circle
is radius 𝑅, we would be proposing an orbit of the form
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8. Differential Equations

𝑟(𝑡) = (𝑅 cos 𝑡 , 𝑅 sin 𝑡 , 0)

Does this solve our equation? To check, we need to plug these in for 𝑥, 𝑦 , and$ z$ to see
if it comes out true. Taking the second derivative gives us the proposed left side:

⟨𝑥′′, 𝑦 ′′, 𝑧′′⟩ = ⟨−𝑅 cos 𝑡 , −𝑅 sin 𝑡 , 0⟩

Now computing the right hand side, we first note that 𝑥2 + 𝑦2 + 𝑧2 = 𝑅2 (since the path
is a circle of radius 𝑅) This makes it easier to simplify things:

−𝐺𝑀
𝑅3 ⟨𝑅 cos 𝑡 , 𝑅 sin 𝑡 , 0⟩

If this circle was a solution: these two sides should be equal! But are they? No, unfortu-
nately not. They have the right functions, and the right sign, but one side has a jumble
of constants out from that the other does not!

How can we fix this? It turns out we overlooked one thing: the speed of our planets
orbit! We just used sine and cosine directly - which traverse the unit circle at unit speed.
This made our orbit traced out at speed 𝑅: meaning that the farther our planet was from
the sun the faster it was going! This isn’t anything like what we see in the world around
us (Earth takes 1 year, whereas pluto goes much slower and takes 120). So, we shoud
try to “adjust” our solution by allowing the speed to vary. As we saw when working
with helices in class, we can change the speed by multipying the time paramter by a
constant. So our next guess is

𝑟(𝑡) = (𝑅 cos(𝑘𝑡), 𝑅 sin(𝑘𝑡), 0)

Re-running the samemath, everythign is the same except the second derivative now has
a factor of 𝑘2 out from (one 𝑘 pops out from each derivative, by the chain rule). Thus
we have

𝑘2 (
−𝑅 cos(𝑘𝑡)
−𝑅 sin(𝑘𝑡)

0
) = 𝐺𝑀

𝑅3 (
−𝑅 cos(𝑘𝑡)
−𝑅 sin(𝑘𝑡)

0
)

These are equal precisely when the constants are equal: thus we have found

𝑘2 = 𝐺𝑀
𝑅3 ⟹ 𝑘 = √𝐺𝑀/𝑅3
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8.2. Universal Gravitation

After this adjustment, wemanaged to describe a precise circular orbit for a planet around
a star! What can we learn from this? Well, the functions cos 𝑡 and sin 𝑡 repeat every 2𝜋 ,
so the functions cos(𝑘𝑡) and sin(𝑘𝑡) repeat every 2𝜋/𝑘 time units. This means the length
of a year for our planet at radius 𝑅 is

Year = 2𝜋
𝑘 = 2𝜋

√
𝐺𝑀
𝑅3

= 2𝜋
√𝐺𝑀

𝑅3/2

That is, for a circular orbit there’s a relationship between the year length, the radius of
the orbit, and the mass of the planet. And since realistic orbits are near-ish to circles,
this should approximately hold for other orbits (in fact, doing more math we figure out
it exatly holds, if you replace the radius with the longer axis of an ellipse).

Why is this important? Well - year length and radius are two things that we canmeasure
from earth with telescopes: but masses of objects that are light years away are much
harder to pin down. And this relationship gives us a way to find the mass without ever
leaving our home!

𝑀 = 4𝜋2
𝐺

𝑅3
Year

Astrophysicts can then take this information to learn quite alot: once you get the star’s
mass, you can use this plus one other measurement (the radial velocity, or slow move-
ment of the star) to find the planet’s mass itself!

https://youtu.be/GidwIghFbYk?si=s0S09ouFzPOSzDsr

8.2.3. Living in 3-dimensions

(You are not responsible for this, so I will not write much detail here: but I may discuss
it a bit in class, if I have time).

https://stevejtrettel.site/code/2021/gravity-power-law/

8.2.4. The 3-body Problem

(You are not responsible for this, so I will not write much detail here: but I may discuss
it a bit in class, if I have time).

https://stevejtrettel.site/code/2022/three-body/
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8. Differential Equations

8.3. Electromagnetism

The force of gravity isn’t the only thing that can be understood by Newton’s paradigm
of forces and accelerations. In the 1800s amathematical understanding of electricity and
magnetism began to come together. We learned that in addition to mass, certain parti-
cles have a charge, which lets them interact with the Electirc Field 𝐸, and the Magnetic
Field 𝐵.
Each of these fields is described by a vector at each point in space, describing how strong
(and in which direction) electiricty and magnetism point there.

PIC MAGNETIC FIELD

But how does a charged particle interact with these fields? The right answer turns out
to be the Lorentz Force Law:

𝐹 = 𝑞(𝐸 + 𝑣 × 𝐵)
Where 𝑞 is the particles charge and 𝑣 is the particle’s veloicty!

In general particles are exposed to both electric and magnetic fields, but to give us some
practice working with parametric curves, we will consider the two cases separately.

8.3.1. Charges in an Electric Field

First, consider the case that we have a particle in a constant electric field

𝐸 = ⟨𝐸𝑥 , 𝐸𝑦 , 𝐸𝑧⟩
How does the particle behave? Recalling that 𝐹 = 𝑚𝑎 and 𝑎 is the second derivative of
position, this gives us a system of equations:

𝑚(
𝑥′′
𝑦 ′′
𝑧′′

) = 𝑞 (
𝐸𝑥
𝐸𝑦
𝐸𝑧
)

Dividng by𝑚, we see that this system of equations just says that the acceleration of 𝑥, 𝑦 ,
and 𝑧 are all constant! But we know how to solve this type of equation: we saw it with
our earliest gravity model. For instance, in the 𝑥-direction we have

$𝑥′′ = − 𝑞𝐸𝑥
2𝑚 𝑡2 + 𝑣𝑥 𝑡 + 𝑥0 And similarly for the 𝑦 and 𝑧 components. Thus we can

predict the path of particles in an eletric field: they get accelerated (speed up), and
follow parabolas!
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8.3. Electromagnetism

8.3.2. Charges in a Magnetic Field

What about a particle in a constant magnetic field? Here the equation becomes 𝑚𝑎 =
𝑞𝑣 × 𝐵. Setting 𝐵 = ⟨𝐵1, 𝐵2, 𝐵3⟩, we can write this equation out in full

𝑚(
𝑥′′
𝑦 ′′
𝑧′′

) = 𝑞 (
𝑥′
𝑦 ′
𝑧′
) × (

𝐵𝑥
𝐵𝑦
𝐵𝑧

)

If we multiply out that cross product, things will get messy quick and it will definitely
look difficult to solve this equation! But - as we are imagining a constant magnetic field
anyway - why don’t we arrange it so that its pointing just along the 𝑧-axis? Then our
magnetic vector becomes ⟨0, 0, 𝐵𝑧⟩, and the cross product simplifes:

𝑣 × 𝐵 = |
̂𝚤 ̂𝚥 �̂�

𝑥′ 𝑦 ′ 𝑧′
0 0 𝐵𝑧

| = ⟨𝑦 ′𝐵𝑧 , −𝑥′𝐵𝑧 , 0⟩

Thus, in this special case we get the equations

𝑚(
𝑥′′
𝑦 ′′
𝑧′′

) = 𝑞𝐵𝑧 (
𝑦 ′
−𝑥′
0

)

The last of these equations is easy to solve: 𝑧′′ = 0 means that 𝑧(𝑡) = 𝑣𝑧 𝑡 + 𝑧0 as for
our simple model of gravity. So, 𝑧 travels linearly at a constant speed. But what do 𝑥
and 𝑦 do? This is a bit tricky, as all we know is how the second derivatives relate to the
first!

To reduce some of the primes, lets write 𝑣𝑥 and 𝑣𝑦 for 𝑥′ and 𝑦 ′. Then, dividing by 𝑚
and setting the big constant 𝑞𝐵𝑧/𝑚 = 𝑘 to help simplify notation further, we have the
system of equations

𝑣 ′𝑥 = 𝑘𝑣𝑦
𝑣 ′𝑦 = −𝑘𝑣𝑥

How can we solve these? Look what happens if we differentiate the second equation
to get 𝑣 ′′𝑦 = −𝑘𝑣 ′𝑥 : now the right hand side has 𝑣 ′𝑥 in it, so we can substitute the first
equation in!
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8. Differential Equations

𝑣 ′′𝑦 = −𝑘𝑣 ′𝑥 = −𝑘(𝑘𝑣)𝑦 = −𝑘2𝑣𝑦
So, whatever 𝑣𝑦 is, its a function whose second derivative is a negative multiple of itself!
We know functions like this - sine and cosine! More specifically, sin(𝑘𝑡) and cos(𝑘𝑡) since
we need that 𝑘2 out front.

With this insight, we can quickly find a solution to our equations

𝑣𝑥 = sin(𝑘𝑡) 𝑣𝑦 = cos(𝑘𝑡)

But these aren’t the solutions we are after - remember these are 𝑥′ and 𝑦 ′ - we want 𝑥
and 𝑦 ! So, we must integrate once more:

𝑥 = ∫ 𝑥′𝑑𝑡 = ∫ sin(𝑘𝑡) 𝑑𝑡 = −1
𝑘 cos(𝑘𝑡) + 𝑥0

𝑦 = ∫ 𝑦 ′𝑑𝑡 = ∫ cos(𝑘𝑡) 𝑑𝑡 = 1
𝑘 sin(𝑘𝑡) + 𝑦0

Putting it all together, what do we have?

(
𝑥
𝑦
𝑧
) =

⎛
⎜⎜
⎝

− cos(𝑘𝑡)
𝑘

sin(𝑘𝑡)
𝑘𝑣𝑧 𝑡

⎞
⎟⎟
⎠
+ (

𝑥0
𝑦0
𝑧0
)

What is this? This is a helix!! So charged particles move on helices through mag-
netic fields. What are the radius of the circles that this helix traces out? They’re 1/𝑘
where remember 𝑘 = 𝑞𝐵𝑧/𝑚 is our constant. But this means that 𝑘 is the curvature
of these circles! (Recall last lecture - we derived that the curvature of a circle was the
reciprocal of its radius)

This gives us another piece of information to understand particles: the curvature of
the circle a charged particle traces out in a magnetic field is 𝑞𝐵/𝑚 If we know the
magnetic field and either the mass or the charge - we can solve for the other so long as
we can measure the radius of the helix! This is a way to actually meausre the mass of
elementary particles!

But there’s still one secret this equation has yet to give up: our constant 𝑘 here is a
multiple of the charge, and it also shows up inside the sine and cosine. What happens
to a parameteric curve like (cos 𝑡 , sin 𝑡) when you multiply 𝑡 by a negative number?
It reverses in direction! Thus, the direction a particle traces out a helix depends on its
charge: positively and negatively charged particles spiral in different directions
in the same magnetic field
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8.3. Electromagnetism

Figure 8.1.: Two particles tracing out helices in a magnetic field. These sprial inwards
as the particles are loosing energy by bumping into air and vapor to leave
these tracks in a bubble chamber.
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8. Differential Equations

8.3.3. The Discovery of Antimatter

This is how we discovered antimatter!

Figure 8.2.: The first piece of antimatter ever observed, which was noticed by this por-
tion of a helical track having the same curvature as the electron’s (so the
same mass) but bending in the opposite direction (so, opposite charge)

8.4. Weather

(You are not responsible for this topic either)
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8.4. Weather

Figure 8.3.: An electron and a positron spiraling in opposite directions.

Figure 8.4.: How many particle/antiparticle pairs can you find in this image?
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8. Differential Equations

(
𝑥′
𝑦 ′
𝑧′
) = (

𝜎𝑦 − 𝑥
𝑟𝑥 − 𝑦 − 𝑥𝑧
𝑥𝑦 − 𝑏𝑧

)

Here are some solutions to the Lorenz equations of 𝑥, 𝑦 , 𝑧.

Of course this is much easier to interpret what is going on if we instead plot these
solutions as a vector curve in three dimensions!

Here’s a program that solves the Lorenz equations in real time, so you can see an initially
rather collected set of initial conditions quickly spread out all over the place and get
mixed up: this is why it is hard to predict the weather!

https://stevejtrettel.site/code/2023/lorenz-attractor
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Part III.

Multivariate
Differentiation
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9. Introduction

So far in this course we have been studying parametric curves. These are functions
which have a single input (the parameter) and multiple outputs (perhaps 𝑥, 𝑦 , 𝑧 or a
color for each pixel of an image, etc.) Now we turn to reverse the situation, a function
which has multiple inputs but a single output! These are sometimes called multivariable
functions (to emphasize the number of inputs), but also are called scalar functions (to
emphasize the output is a single number, or a scalar).

In physics, functions with multiple inputs are often called fields. So yet another name
for this class of things is a scalar field! Just as I have done in these notes elsewhere (with
vector notation, for example) I will try to use all of these terms to help you prepare for
the real world where there’s no standardization.

Definition 9.1 (Multivariate Function). A function 𝑓 ∶ ℝ𝑛 → ℝ taking in an 𝑛-tuple of
real numbers, and outputting a single real number.

uch a function is written 𝑓 (𝑥, 𝑦 , 𝑧, …) for example

𝑓 (𝑥, 𝑦 , 𝑧) = 2𝑥2 − 3𝑥 + 𝑠𝑖𝑛(𝑒𝑧)

The domain of a scalar function is the set of inputs for which the function makes
sense.

Example 9.1. The domain of 𝑓 (𝑥, 𝑦) = ln(𝑥2+𝑦2−1) is the exterior of the unit circle in
the plane 𝐷 = {(𝑥, 𝑦) ∣ 𝑥2 + 𝑦2 > 1}. This is because the logarithm of zero or a negative
nuumber is underfined, so the only allowable inputs are when 𝑥2 + 𝑦2 − 1 is positive.

Our goal in this chapter is to get comfortable with multivariable functions from two
different perspectives: drawing graphs and drawing level sets.
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9. Introduction

9.0.1. Examples

Scalar fields show up everywhere in mathematics and the sciences. Consider the tem-
perature in a room: this is a function that takes in a point (say, with three coordinates
(𝑥, 𝑦 , 𝑧) ) and returns a single number - the temperature of the air at that point in space.
This is then a function 𝑇 ∶ ℝ3 → ℝ.

If we wanted to track the temperature over time, this could be done with a function
ℝ4 → ℝ which takes (𝑥, 𝑦 , 𝑧, 𝑡) and returns the temperature there.

Of course - temperature is just an arbitrary (but conceptually useful!) example. Any
quantity you can measure at differet points in space(time) gives a scalar function of 3
or 4 variables!

Exercise 9.1. Come up with some examples of scalar functions that you think about in
daily life (without necessarily having ever thought about them mathematically!)

9.1. Graphs

The graph of a 1-variable function 𝑓 is a curve in the plane: its the set of points (𝑥, 𝑦)
where 𝑦 = 𝑓 (𝑥). We can make a similar definition for the graph of a scalar function

Definition 9.2. The graph of a function 𝑓 ∶ ℝ𝑛 → ℝ is a subset of ℝ𝑛+1: its the set of
points (𝑥, 𝑦) where 𝑥 ∈ ℝ𝑛 and 𝑦 = 𝑓 (𝑥).

This isn’t that useful for visualizing unless dimenisons are pretty small! If there are 𝑛
inputs and 1 output we need 𝑛 + 1 dimensions to put them all on a graph. And, if we
want to actually see the graph it better fit inside of 3D space so 𝑛 can only be 1 (the case
we already know!) or 2.

If 𝑛 = 2, then we have two input variables and its easiest to think of them as being on the
𝑥𝑦 plane. Then we may name the output variable 𝑧, and plot our function 𝑧 = 𝑓 (𝑥, 𝑦)
as the points (𝑥, 𝑦 , 𝑓 (𝑥, 𝑦)) in 3D space.

Here’s a graphing calculator for functions 𝑧 = 𝑓 (𝑥, 𝑦):

https://stevejtrettel.site/code/2023/graph3d
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9.1. Graphs

9.1.1. How to Draw Graphs

Drawing a 3D graph is difficult to do in general: but often we can use our knowledge
of 2D graphs to try and build up an understanding by slicing. The idea is to take a
function 𝑧 = 𝑓 (𝑥, 𝑦) and plug in constant values for one of the variables, then try to
stack these slices to get a model of the entire surface.

Example 9.2 (Slicing 𝑧 = 𝑥𝑦 ). Draw the slices of 𝑧 = 𝑥𝑦 - When 𝑦 = 0 this is the
horizongal line 𝑧 = 0 - When 𝑦 = 1 this is the line 𝑧 = 𝑥 - When 𝑦 = 2 this is the line
𝑧 = 2𝑥
Thus, as 𝑦 increases, the slope of the graph’s cross section increases!

Example 9.3 (Slicing 𝑧 = 𝑦𝑒𝑥 ). Here the slices for 𝑦 = 0, 𝑦 = 1 and 𝑦 = 2 look like 0 𝑒𝑥
and 2𝑒𝑥 . They are copies of the exponential getting steeper and steeper.

Example 9.4 (Slicing 𝑧 = 𝑥2 + 𝑦2). Slices of this function are parabolas in both the 𝑥
and 𝑦 directions. Fixing 𝑦 equal to different values, the parabolas shift upwards! For
𝑦 = 0, 1, 2 we get

𝑧 = 𝑥2, 𝑧 = 𝑥2 + 1 𝑧 = 𝑥2 + 4

9.1.2. Useful Graphs to Know

There are a couple multivariable functions whose graphs are good to know. Indeed -
we’ve already met some of these before! If 𝑓 (𝑥, 𝑦) is a linear equation like 𝑎𝑥 + 𝑏𝑦 + 𝑐,
the graph is the set of points

𝑧 = 𝑎𝑥 + 𝑏𝑦 + 𝑐

This is a plane! (It might help to rewrite as 𝑎𝑥 + 𝑏𝑦 − 𝑧 = −𝑐 to see its an implicit
equation, with normal vector ⟨𝑎, 𝑏, −1⟩.)
What about 𝑧 = 𝑥2 + 𝑦2? We saw this one above in our discussion of slicing, and we
also saw it earlier (in “Shapes”): its a parabola of revolution!

Another useful function to know is the saddle surface 𝑧 = 𝑥2 − 𝑦2. We also met this one
back in the discussion of “Shapes”.

75



9. Introduction

Figure 9.1.: The graph of 𝑧 = 𝑥2 + 𝑦2

Figure 9.2.: The graph of 𝑧 = 𝑥2 − 𝑦2
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9.2. Level Sets

Above we looked at one means of drawing a graph by slicing: we attempted to slice it
by vertical planes into the graphs of simpler 1-dimensional functions that we already
knew! This works sometimes, but if you can’t quickly stack the slices into a coherent
image in your mind, knowing the slices won’t help you with much else.

So here, we seek other methods of understanding these functions, beyond their graphs.
By far the most useful way to depict multivariable functions is by instead slicing with
horizontal planes and drawing their level sets.

Definition 9.3 (Level set). The level set corresponding to 𝑐 ∈ ℝ for a function 𝑓 (𝑥, 𝑦)
is the set of points in the plane that 𝑓 maps to 𝑐:

𝐿𝑐 = {(𝑥, 𝑦) ∣ 𝑓 (𝑥, 𝑦) = 𝑐}

Here’s a graphing calculator that will draw for you the level sets of a function: I often
think about “sea level” when I think of a level set - a coastline is the level set ℎ(𝑥, 𝑦) = 0
above the water. And different level sets correspond to what the coastlines would be if
the sea was different heights.

https://stevejtrettel.site/code/2023/contour-slicing

A contour plot is a drawing of the domain of a function, with level sets representing var-
ious values of the range. These are perhaps most familiar from elevation maps. Draw-
ing multiple level sets at once gives a good sense of the behavior of the entire function,
though its most effective when the individual level sets are labled somehow (often by
color) so you can get a sense of their relative values.

Below, we draw the samemap but only plot the level curve corresponding to 200ft above
sea level.

𝐿200 = {(𝑥, 𝑦) ∣ ℎ(𝑥, 𝑦) = 200}

A single level set of a function is actually something that you’ve encountered in previous
courses: we called it an implicit equation as it defines a shape implicitly by saying (𝑥, 𝑦)
lives on the curve if ℎ(𝑥, 𝑦) has a specific value - instead of specifying it explicitly liek a
function.

Below is a graphing calculator to let you draw some contour plots. Can you imagine
the 3D shape from its 2D slices?

https://stevejtrettel.site/code/2023/levelsets
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Figure 9.3.: A topographic map of San Francisco

Figure 9.4.: Some Level curves of the map. Can you see lone mountain?

Figure 9.5.: The 200ft-level set
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Figure 9.6.: Some contour plots of various functions.

After looking at several functions and their level sets, you’ll start to notice that there
are a couple “important behaviors” that show up again and again. These are

• Concentric rings, around a point
• Nearly parallel lines
• Two lines crossing each other.

These signify three important types of behaivor, which we can see by looking back to
our “useful graphs to know”

Concentric rings around a point signifies the function has either a maximum or a mini-
mum there.

Nearly parallel lines means the function is increasing or decreasing there.

Two lines crossing means that we are at a saddle shaped point on our graph - it increases
in two directions and decreases in the other two.

It turns out, that all behavior of level sets is built out of these three basic behaivors.
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9.3. Functions of ≥ 3 Variables

Drawing a contour plot is a form of dimension reduction: we’ve managed to understand
the behavior of a function 𝑓 whose graph 𝑧 = 𝑓 (𝑥, 𝑦) lies in 3 dimensional space, by
only looking at a 2-dimenisonal image (its domain, covered in level sets).

This technique can help us level up our intuition to functions of three variables: things
like 𝑤 = 𝑓 (𝑥, 𝑦 , 𝑧) whose graphs would naturally live in four dimensional space!

Exercise 9.2. What do the level sets of the function 𝑤 = 𝑥2 + 𝑦2 + 𝑧2 look like, for
different values of 𝑤?

In three dimensions there are more types of basic behavior than the ones we saw in 2D.
You don’t need to learn all of them: but to try and get some intuition for the fourth
dimension its a good exercise to try and imagine what the graphs of these functions
must be like, if their contours are drawn below.

Three dimensional level sets describe implicit surfaces which are extremely useful ob-
jects. As we’ve already seen with curves, sometimes writing down a paramterization
can be hard. Adn this is even more true for surfaces! So having another way to ex-
press complicated ones can be a huge help. Below are two examples where I have used
implicit surfaces in mathematical rendering.
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9.3. Functions of ≥ 3 Variables

Figure 9.7.: The implicit surface sin(𝑥) cos(𝑡) + sin(𝑦) cos(𝑧) + sin(𝑧) cos(𝑥) = 0. This
is a good approximation to a particularly important mathematical surface
called the gyroid.

Figure 9.8.: This surface is called the Barth Decic and arises in a field of mathematics
called algebraic geometry. Its equation is given below
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9. Introduction

8(𝑥2 − 𝑝4𝑦2)(𝑦2 − 𝑝4𝑧2)(𝑧2 − 𝑝4𝑥2) (𝑥4 + 𝑦4 + 𝑧4 − 2𝑥2𝑦2 − 2𝑥2𝑧2 − 2𝑦2𝑧2)
+ 𝑎(3 + 5𝑝) ((𝑥2 + 𝑦2 + 𝑧2 − 𝑎))2 ((𝑥2 + 𝑦2 + 𝑧2 − (2 − 𝑝)𝑎))2
= 0

9.4. Videos

The Calculus Blue Series introduction to multivariate functions:

https://youtu.be/e2TJpv39SJo?si=mGoSRbZ7BOqstCZi

https://youtu.be/gbj0YfdovxU?si=7t8M9qKPA8JkPp4U

The Calculus Blue series on Level Sets:

https://youtu.be/zEvGUXXW1BI?si=54UKw1EULxEsU6lV
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10. Partial Derivatives

How do we differentiate a function with multiple inputs? We will learn several ways
to do this throughout the course. But all methods rely on one fundamental idea: the
partial derivative.

10.1. Geometry of Partial Derivatives

If we take a function 𝑓 (𝑥, 𝑦) and hold the 𝑦 value constant, we get a function of just 𝑥 .
For example, if 𝑓 (𝑥, 𝑦) = sin(𝑥 ∗ 𝑦) and 𝑦 = 2 we get the function 𝑓 (𝑥, 2) = sin(2𝑥).
This sort of function we already know how to take the derivative of!

𝑓 (𝑥, 2)′ = 𝑑
𝑑𝑥 𝑓 (𝑥, 2) = 2 cos(2𝑥)

.

What does this derivative mean? Well, we are measuring the slope in the 𝑥-direction
along the line where 𝑦 = 2. Here’s a graphing calculator showing this, for different
slices and different points!

https://stevejtrettel.site/code/2023/partial-derivatives

What happens if we instead looked at the slice where 𝑦 = 7 Then we’d have 𝑓 (𝑥, 7) =
sin(7𝑥) and the derivative would be

𝑓 (𝑥, 7)′ = 𝑑
𝑑𝑥 𝑓 (𝑥, 7) = 7 cos(7𝑥)

Thus, whaever 𝑦 is we see it comes out front as a coefficient via the chain rule. This tells
us that if we just call the constant 𝑦 (and don’t bother to specify its numerical value) we
should get

𝑓 (𝑥, 𝑦)′ = 𝑑
𝑑𝑥 𝑓 (𝑥, 𝑦) = 𝑦 cos(𝑥𝑦)
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10. Partial Derivatives

The only thing confusing here is that unless we know what we are doing, it’s hard to
tell what the prime means. So we should probably not use this notation when there’s
more than one variable.

In fact, to signify that we are taking the derivative of a multivariable function, its cus-
tomary to write the 𝑑 a little fancy as well, using the italic 𝜕

Definition 10.1 (𝑥-Partial Derivative). If 𝑓 (𝑥, 𝑦 , 𝑧, …) is a function of multiple variables,
the *partial derivative with respect to 𝑥 is the result of treating all other variables as
constants, and differentiating with respect to 𝑥 . It’s denoted

𝜕𝑓
𝜕𝑥 = limℎ→0

𝑓 (𝑥 + ℎ, 𝑦 , 𝑧, …) − 𝑓 (𝑥, 𝑦 , 𝑧, …)
ℎ

Partial derivatives are ubiquitous in the sciences, and because they are so widely used in
so many fields, there are also many common notations for them. I will use many of the
notations interchangably in class, to prepare you for the real world: and for reference
the most common ones appear below.

Definition 10.2 (Notations for Partial Differentiation). The partial derivative of 𝑓 with
respect to 𝑥 may be written as

𝜕𝑓
𝜕𝑥 = 𝜕

𝜕𝑥 𝑓 = 𝜕𝑥𝑓 = 𝑓𝑥

The last notation takes some getting used to at first: the subscript represents differen-
tiation! But because of its conciseness, it is very commonly used when performing
calculations.

10.1.1. Implicit Partial Derivatives

Just like in single variable calculus, we can use implicit differentiation to take the deriva-
tive of implicit equations with multiple variables.
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10.1. Geometry of Partial Derivatives

10.1.2. Implicit Differentiation

Example 10.1 (Implicit Partial Differentiation). Find the derivative 𝜕𝑥𝑧 of the expres-
sion

𝑥3 + 𝑦3 + 𝑧3 + 6𝑥𝑦𝑧 = 7

Here we act as though 𝑧 is implicity a function of 𝑥 , and we differentiate the whole
equation:

𝜕
𝜕𝑥 (𝑥

3 + 𝑦3 + 𝑧3 + 6𝑥𝑦𝑧) = 𝜕
𝜕𝑥 7

Computing this (where we need the product rule on the last term, since we have both
an 𝑥 and a 𝑧-where 𝑧 is implicitly a function of 𝑥!) gives

3𝑥2 + 0 + 3𝑧2 𝜕𝑧𝜕𝑥 + 6𝑦𝑧 + 6𝑥𝑦 𝜕𝑧𝜕𝑥 = 0

Then, we just solve for 𝜕𝑥𝑧:

(3𝑧2 + 6𝑥𝑦) 𝜕𝑧𝜕𝑥 = −3𝑥2 − 6𝑦𝑧

𝜕𝑧
𝜕𝑥 = −3𝑥2 − 6𝑦𝑧

3𝑧2 + 6𝑥𝑦

What is implicit differentiation measuring? Think back to the 2-dimensional case, from
calculus 1. There we had an implicit equation - what we now know to be a level set -
and we were trying to measure 𝑑𝑦/𝑑𝑥 : that is, for a small change in 𝑥 , how much does
𝑦 have to change, to stay on the level set?

The same picture works here, but now in higher dimension. An implicit equation in
𝑥, 𝑦 , 𝑧 determines a surface in ℝ3 - which is the level set of some 3−variable function.
And a quantity like 𝜕𝑧/𝜕𝑥 tells us how much 𝑧 has to change to stay on the surface, if
we change 𝑥 a little bit.

We will develop more sophicsticated versions of this when we talk about linearization
and the gradient.
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10. Partial Derivatives

10.2. Higher Derivatives

Higher order partial derivatives are no more difficult: each time you take the derivative,
you just treat all other variables as constants.

For instance, the second partial 𝑥 derivative is just what you get by taking the 𝑥 deriva-
tive twice:

𝜕𝑥𝜕𝑥 (cos(𝑥𝑦)) = 𝜕𝑥 (−𝑦 sin(𝑥𝑦)) = −𝑦2 cos(𝑥𝑦)

But you can also take partials with respect to different variables.

𝜕𝑥𝜕𝑦 (𝑥3𝑦2) = 𝜕𝑥 (2𝑥3𝑦) = 6𝑥2𝑦

Definition 10.3. A higher partial derivative is just the result of taking the partial deriva-
tive more than once (perhaps with respect to different variables). When doing this, one
needs to be careful with notation: the “derivative notations” are all read like function
composition

𝜕𝑥𝜕𝑦𝜕𝑧𝑓 = 𝜕
𝜕𝑥

𝜕
𝜕𝑦

𝜕
𝜕𝑧 𝑓

both mean do the z partial, then the y partial, then the x partial.

The subscript notation is read from inside out:

𝑓𝑧𝑦𝑥 = ((𝑓𝑧)𝑦 )𝑥
is the equivalent to the above: doing 𝑧 first, then diffrentiating with respect to 𝑦 , and
finally with respect ot 𝑥 .

Theorem 10.1 (Equality of Mixed Partials). So long as the partial derivatives are defined
and continuous, the order in which you take them does not matter.
𝜕𝑥𝜕𝑦𝑓 = 𝜕𝑦𝜕𝑥𝑓 $ This works with higher order derivatives as well

𝑓𝑥𝑦𝑥𝑥 = 𝑓𝑥𝑥𝑥𝑦 = 𝑓𝑦𝑥𝑥𝑥 = ⋯

In fact, the second order partial derivatives together form an operation called the lapla-
cian which arises in many applications:
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10.3. Partial Differential Equations

Definition 10.4. The Laplacian operator is the sum of the (non-mixed) second order
partial derivatives: it is sometimes written as Δ and sometimes as ∇2: in the plane this
is

Δ = ∇2 = 𝜕2
𝜕𝑥 + 𝜕2

𝜕𝑦

and in higher dimensions, its analogous just with more variables. To take the laplacian
of a function, you just find its non-mixed second partials, and add them all up:

Δ𝑓 = 𝑓𝑥𝑥 + 𝑓𝑦𝑦

One way to imagine what the laplacian is measuring is a sort of average concavity: it
adds up the concavity in both the 𝑥 and 𝑦 directions. Thus, a function like 𝑥2 + 𝑦2 has
laplacian

Δ(𝑥2 + 𝑦2) = 2 + 2 = 4

so its concave up on average, −(𝑥2 + 𝑦2) has laplacian −4 so its concave down, and
𝑥2 − 𝑦2 has laplacian equal to zero: it is concave up in one direction and concave down
in the other: so added together they cancel.

Functions whose Laplacian are zero are called harmonic functions and play a huge role
in understanding differential equations, physics, and engineering.

10.3. Partial Differential Equations

Partial derivatives are the language in which much of modern science is written. We
saw in the last portion of the course that vector valued differential equations are the
right language to describe the motion of single particles: but what about quantites that
depend on more than one variable?

A first example is simply waves on a string: when a guitar string is pulled taught, if
you try to pluck it away from rest it pulls back on you - the farther you pull it away, the
harder it pulls back.

The amount a string curves away from its straight line equalibrium is captured (roughly)
by its concavity. And so one simple model of string motion would say the bigger the
concavity the faster it wants to “snap back”. Said more precisely
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10. Partial Derivatives

The acceleration of the string is proportional to its concavity

Writing this in math - if the string’s dispacement at position 𝑥 and time 𝑡 is given by the
function 𝑊(𝑥, 𝑡), we have the partial differential equation below:

𝜕𝑥𝑥𝑊 = 𝜕𝑡 𝑡𝑊

In two dimensions, a wave equation measures the displacement of a circular membrane,
like a drumhead or the interior speaker of an earbud. Here we have to account for
displacements in both the x and y directions. Thus, the 2 dimensional wave equation is
below (now written in the more ‘verbose’ notation for partial derivatives)

𝜕2𝑊
𝜕𝑥2 + 𝜕2𝑊

𝜕𝑦2 = 𝜕2𝑊
𝜕𝑡2

Here’s some solutions to this equation:

https://stevejtrettel.site/code/2022/circular-drum

This same wave equation in three dimensions describes the propagation of electromag-
netic waves - or light! This was a triumph of 19th century physics, where James Clerk
Maxwell derived this wave equation from his equations for the electromangetic field.
Below, you can see a (numerically computed) solution to this equation, showing a light
beam being focused by a glass lens.

https://stevejtrettel.site/code/2021/wave-eqn-flash

Similar partial differential equations occur throughout physics and engineering. (If you
have yet to be convinced of the wide applicability of partial derivatives, look up “con-
tinuum mechanics” and try to find a topic you’re interested in.)

One final example I’ll mention here is quantummechanics, where the fundamental equa-
tion (called the Schodinger equation) is a replacement of Newtons Law ( a vector valued
differential equation) with a partial differential equation. This big change in the math-
ematics is what causes people to say that quantum particles can be “like waves”.

Below is a calculator I wrote for playing around with the “double slit experiment” in
quantum mechanics. This will not come up further in our course, but feel free to ask
me if you are interested!

https://stevejtrettel.site/code/2021/schrodinger-double-slit
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10.4. Videos

10.4. Videos

10.4.1. Calculus Blue

https://youtu.be/78bXzF_J3RM?si=AdXYWkEEwH0tkSOX

https://youtu.be/V-_WuybYkyg?si=9hC-AnNP52ehPfcZ

https://youtu.be/T_7FXwImddU?si=ex91sAxbEjLqWZJC

https://youtu.be/DYrs_cOg0E8?si=V3bmWBMgCQrFhuHs

10.4.2. Khan Academy

https://youtu.be/AXqhWeUEtQU?si=XRKrVYhjZC_qWp-p

https://youtu.be/dfvnCHqzK54?si=rasi8aG3Gxt0LFlM

https://youtu.be/J08-L2buigM?si=tNUmEbz-7pFXO2N-

10.4.3. Example Problems:

https://youtu.be/btcSjC5z7WQ?si=SnKosx3_t96cjwi3

https://youtu.be/3itjTS2Y9oE?si=7rWWzXWUHrpllUUC

https://youtu.be/EoEV5-_mLeM?si=LkKZqesDmHVoZqcy
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11. Linearization

11.1. The Fundamental Strategy of Calculus

Take a complicated function, zoom in, replace it with something linear. Thus we are
looking to replace graphs by planes. We have two formulas for planes (implicit and
parametric) so we can have two ways to do this.

First we will look at the more “implicit” approach, and produce an equation of a plane
of the form 𝑧 = 𝑎𝑥 + 𝑏𝑦 + 𝑐 (this is just re-arranged from our most general form in the
previous chapters)

To start, look back on the tangent line formula from single variable calculus:

𝑦 = 𝑦0 + 𝑓 ′(𝑥0)(𝑥 − 𝑥0)

Our extension to multiple dimensions is just….to add more variables! We need to adjust
𝑧 not just for changes in 𝑥 any more, but also for changes in any input.

Theorem 11.1 (Tangent Plane).

𝑧 = 𝑧0 + 𝑓𝑥 (𝑥0, 𝑦0)(𝑥 − 𝑥0) + 𝑓𝑦 (𝑥0, 𝑦0)(𝑦 − 𝑦0)

Same formula works in higher dimensions, by just adding more terms. Since this gives
us an implicit plane, we can re-arrange this to the “standard form” and find the normal
vector to the graph

Theorem 11.2 (Normal Vector to a Graph). At the point (𝑥0, 𝑦0) the plane

𝑓𝑥 (𝑥0, 𝑦0)(𝑥 − 𝑥0) + 𝑓𝑦 (𝑥0, 𝑦0)(𝑦 − 𝑦0) − 𝑧 = −𝑧0
is tangent to the graph of 𝑓 . Thus, the normal vector is the coefficient vector

𝑛 = ⟨𝑓𝑥 (𝑥0, 𝑦0), 𝑓𝑦 (𝑥0, 𝑦0), −1⟩
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Figure 11.1.: The downward facing normal, on two graphs.

Note that any scalar multiple of this vector is also a normal vector to the graph - this just
provides one such vector. And, since the 𝑧 is downwards, this is the downwards pointing
normal vector.

Depending on the application, sometimes we want the upward facing normal: that’s
what you’d get by multiplying this by −1 so that the last coordinate is a 1:

We will use normal vectors to surfaces a lot in the last portion of this course, on Vector
Analysis. Here we will often need to be careful, and thinking about whether we want
the normal that is pointed up or down in a given application.

Example 11.1. Find the tangent plane to 𝑧 = 𝑥2 + 2𝑦2 above the point (𝑥, 𝑦) = (2, 3).

The second method we could use is to try and find a parametric equation for the plane.
Again, we start by considering the one dimensional case. A parametric line is of the
form 𝑣 𝑡 + 𝑝 for 𝑣 the direction and 𝑝 a point. How do we find the tangent line to a
function 𝑦 = 𝑓 (𝑥)? The derivative measures the slope, so if we go over by 1 unit in the
x direction we go up by 𝑓 ′(𝑥0) units in the 𝑦-direction. Thus, the direction vector is

𝑣 = ⟨1, 𝑓 ′(𝑥0)⟩
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Figure 11.2.: The upward facing normal.

Now all we need is the position: but that’s just (𝑥0, 𝑓 (𝑥0)) on the graph! Putting these
together we get the tangent line

𝐿(𝑡) = ( 𝑥0
𝑓 (𝑥0)) + 𝑡 ( 1

𝑓 ′(𝑥0))

What do we do for a function of two or more variables? We just…add more variables!

Theorem 11.3 (Parametric Tangent Plane).

𝐿(𝑠, 𝑡) = (
𝑥0
𝑦0

𝑓 (𝑥0, 𝑦0)
) + 𝑠 (

1
0

𝑓𝑥 (𝑥0, 𝑦0)
) + 𝑡 (

0
1

𝑓𝑦 (𝑥0, 𝑦0)
)

Example 11.2. Find a parametric equation for the tangent plane to the saddle 𝑥2 − 𝑦2
at the point (1, 1, 0).

11.1.1. Differentiability

Partial derivatives give us a way to test if a function itself is differentiable in multiple
variables.
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Definition 11.1 (Multivariate Differentiablity). A function 𝑓 is differentiable at a point
𝑝 if its tangent plane at 𝑝 is a good approximation to its graph near 𝑝.

Functions we will see are mostly differentiable, but warning there are functions that are
not. Luckily, there’s an easy way to check

Theorem 11.4 (Multivariate Differentiability). A multivariate function is differentiable
at a point, if and only if all of its partial derivatives exist and are continuous at that point.

11.2. Differentials

The Fundamental Strategy of calculus is to take a complicated nonlinear object (like
a function that you encounter in some real-world problem) and zoom in until it looks
linear. Here, this zooming in process is realized by finding the tangent plane. Close to
the point (𝑥0, 𝑦0) the graph of the function 𝑧 = 𝑓 (𝑥, 𝑦) looks like

𝐿(𝑥, 𝑦) = 𝑧0 + 𝑓𝑥 (𝑥0, 𝑦0)(𝑥 − 𝑥0) + 𝑓𝑦 (𝑥0, 𝑦0)(𝑦 − 𝑦0)

Where 𝑧0 = 𝑓 (𝑥0, 𝑦0). This is just rehashing our definition of the tangent plane of course:
but one use for it is to be able to approximate the value of 𝑓 (𝑥, 𝑦) if you know the value
of 𝑓 at a nearby point (𝑥0, 𝑦0) and also its partial derivatives there.

Example 11.3. Find approximate value value of 𝑥2 + 3𝑥𝑦 − 𝑦2 at the point (2.05, 2.96).

Using linearization to estimate changes in a value: fundamental to physics and engi-
neering. In 1-dimension, we define a variable called 𝑑𝑥 that we think of as measuring
small changes in the input variable, and 𝑑𝑦 = 𝑦 − 𝑦0 which measures small changes in
the output. These are related by

𝑑𝑦 = 𝑓 ′(𝑥)𝑑𝑥

So, any change in the input is multiplied by the derivative to give a change in the output.
We can do a similar thing in more variables. For a function 𝑓 (𝑥, 𝑦), we have the tangent
plane above

𝑧 = 𝑧0 + 𝑓𝑥 (𝑥0, 𝑦0)(𝑥 − 𝑥0) + 𝑓𝑦 (𝑥0, 𝑦0)(𝑦 − 𝑦0)

Subtracting 𝑧0 and setting 𝑑𝑧 = 𝑧 − 𝑧0, and similarly for 𝑑𝑥, 𝑑𝑦 we can rewrite this as
below:
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Definition 11.2 (Differentials).

𝑑𝑧 = 𝑓𝑥 (𝑥, 𝑦)𝑑𝑥 + 𝑓𝑦 (𝑥, 𝑦)𝑑𝑦

This allows us to easily estimate how much 𝑧 could change if we know howmuch 𝑥 and
𝑦 can change. This is of fundamental importance in error analysis, the foundation of all
experimental science’s ability to compare with theoretical predictions.

Example 11.4. The volume of a cone is given by 𝑉 = 𝜋𝑟2ℎ/3. We have a cone which
we measure the height to be 10cm and the radius to be 25cm, but our measuring device
can have an error up to 1mm or 0.1𝑐𝑚. What is the estimated maximal error in volume
our measurement could have?

This measurement can also be interpreted geometrically: this is the approximate volume
of a thin-shelled cone of thickness 1𝑚𝑚 with radius 25cm and height 10cm.

Example 11.5. The dimensions of a rectangular box are measured to be 75cm, 60cm
and 40cm. Each measurement is correct to within 0.05𝑐𝑚. What is the maximal error in
volume measurement we might expect?

11.3. Videos

11.3.1. Calculus Blue:

https://youtu.be/4tNMHtMyDns?si=ITtSJE1NzBJ9bfMe

https://youtu.be/0vma0sbpSqU?si=07L_BNXg7pXjR5A8

https://youtu.be/cK9fHRtv2Rk?si=16JIFRyPtoP3pN0V

11.3.2. Khan Academy

https://youtu.be/o7_zS7Bx2VA?si=pj3GE8x_iiOTBHRH

11.3.3. Example Problems:

https://youtu.be/oJ_LA1AYUl8?si=UmgBmFOqecnmfub7

https://youtu.be/cRGoTL00Ksg?si=0RWUC0TaeBVtuEWd
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12. The Gradient

12.1. Directional Derivatives

We have seen that 𝜕𝑥𝑓 and 𝜕𝑦𝑓 measure the slope of a multivariate function in the 𝑥 and
𝑦 directions, respectively. But what is its rate of change in the direction of an arbitrary
unit vector 𝑢?

Definition 12.1 (Directional Derivative). The derivative of 𝑓 in the direction of a unit
vector 𝑢 is denoted 𝐷𝑢𝑓 and is defined by the limit

limℎ→0
𝑓 (𝑝 + 𝜖𝑢) − 𝑓 (𝑝)

𝜖

Computing this seems difficult. But we can use the Fundamental Strategy of Calculus
to save the day! We know that the slope in the direction 𝑢 must lie on the tangent plane,
which we have already parameterized in terms of the 𝑥 and 𝑦 partials:

Plane(𝑠, 𝑡) = (
𝑥
𝑦

𝑓 (𝑥, 𝑦)
) + 𝑠 (

1
0

𝜕𝑥𝑓
) + 𝑡 (

0
1

𝜕𝑦𝑓
)

We can plug 𝑢 = ⟨𝑎, 𝑏⟩ in here and take a look at the 𝑧 coordinate to read off the change
in 𝑧.

𝑧 = 𝑓 (𝑥, 𝑦) + 𝑎𝜕𝑥𝑓 + 𝑏𝜕𝑦𝑓

So the change in 𝑧 is just the quantity 𝑎𝜕𝑥𝑓 + 𝑏𝜕𝑦𝑓 . Alternatively, we can use the differ-
ential we derived from this linear approximation

𝑑𝑧 = 𝑓𝑥𝑑𝑥 + 𝑓𝑦𝑑𝑦

To see if 𝑑𝑥 = 𝑎 and 𝑑𝑦 = 𝑏 that 𝑑𝑧 = 𝑎𝑓𝑥 + 𝑏𝑓𝑦 . It’s just a linear combination of the two
basic slopes we already know!
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12. The Gradient

Theorem 12.1 (Directional Derivative). If 𝑢 = ⟨𝑎, 𝑏⟩ is a unit vector, then

𝐷𝑢𝑓 (𝑥, 𝑦) = 𝑎𝑓𝑥 (𝑥, 𝑦) + 𝑏𝑓𝑦 (𝑥, 𝑦)

All of this carries over to three or higher dimensions: if 𝑢 = ⟨𝑎, 𝑏, 𝑐⟩ and 𝑓 (𝑥, 𝑦 , 𝑧) is a
three variable function then

𝐷𝑢𝑓 = 𝑎𝑓𝑥 + 𝑏𝑓𝑦 + 𝑐𝑓𝑧

12.2. The Gradient

Because the collection of partial derivatives ⟨𝑓𝑥 , 𝑓𝑦 ⟩ will show up so often it will be
useful to give this a name: the gradient.

Definition 12.2 (The Gradient). The gradient of a function 𝑓 (𝑥, 𝑦) is
∇𝑓 = ⟨𝑓𝑥 , 𝑓𝑦 ⟩

The gradient of 𝑓 (𝑥, 𝑦 , 𝑧) is the 3-dimensional vector

∇𝑓 = ⟨𝑓𝑥 , 𝑓𝑦 , 𝑓𝑧⟩

Definition 12.3 (Nabla). The symbol ∇ is called nabla or del, and is a shorthand for the
vector of partial derivative operators:

∇ = ⟨𝜕𝑥 , 𝜕𝑦 , 𝜕𝑧⟩

This notation is convenient here as

∇𝑓 = ⟨𝜕𝑥 , 𝜕𝑦⟩𝑓
= ⟨𝜕𝑥𝑓 , 𝜕𝑦𝑓 ⟩
= ⟨𝑓𝑥 , 𝑓𝑦 ⟩

But it will also be convenient later in the course, for defining other types of derivatives.
A first benefit here is it can take our formula for the directional derivative and make it
much simpler to remember!

Theorem 12.2 (Directional Derivatives and the Gradient).

𝐷𝑢𝑓 (𝑥, 𝑦) = ∇𝑓 ⋅ �̂�
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12.3. Geometry of the Gradient

12.3. Geometry of the Gradient

Since we know the interpretation of dot products in terms of angles, we can use the
directional derivative formula above to help us understand the direction the gradient
points in.

If a vector 𝑢 makes angle 𝜃 with the gradient, we see the directional derivative in direc-
tion 𝑢 is given by

𝐷𝑢𝑓 = ∇𝑓 ⋅ 𝑢 = ‖∇𝑓 ‖‖𝑢‖ cos 𝜃 = ‖∇𝑓 ‖ cos 𝜃

This actually tells us alot!

Theorem 12.3.

• The gradient points in the direction of maximal directional derivative.
• Its magnitude is the directional derivative in that direction
• In the orthogonal direction to the gradient, the directional derivative is zero: the

function is not changing!

https://stevejtrettel.site/code/2022/gradient

The last of these facts is so useful on its own, that it gets it’s own theorem box:

Theorem 12.4. The gradient vector is orthogonal to the level sets of a function, and points
in the direction of increase.

This is very helpful for understanding a function from its gradient, as it lets us convert
between level set understanding and gradient understandings!

12.3.0.1. The Gradient and Level Sets

When level sets are close to each other, that means the function is steeply increasing or
decreasing, so the gradient is long. When level sets are far apart, that means the function
is only slowly changing, so the gradient is short. Thus, there’s an inverse relationship
between the length of the gradient and the density of level sets.

99

https://stevejtrettel.site/code/2022/gradient


12. The Gradient

Figure 12.1.: The gradient is orthogonal to level sets.

Figure 12.2.: The gradient points in the direction of steepest ascent.

Figure 12.3.: The length of the gradient is inversely proportional to the density of con-
tour lines.
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12.3. Geometry of the Gradient

12.3.1. Tangent Planes to Level Sets

Because the gradient is a normal vector to level sets we can use the gradient to derive
the equation for a tangent plane to a surface! We previously wrote it down of for func-
tions,

𝑓𝑥 (𝑎, 𝑏, 𝑐)(𝑥 − 𝑎) + 𝑓𝑦 (𝑎, 𝑏, 𝑐)(𝑦 − 𝑏) + 𝑓𝑧(𝑎, 𝑏, 𝑐)(𝑧 − 𝑐) = 0

But this was just in analogy with the tangent line case. Now, we wish to derive it from
our original description of planes, in terms of their normal vectors: if 𝑝 is a point on the
plane and 𝑛 is a normal vector to the plane, the equation

𝑛 ⋅ ((𝑥, 𝑦 , 𝑧) − 𝑝) = 0

Describes the plane because it says (𝑥, 𝑦 , 𝑧) lies in the plane so long as the vector con-
necting it to 𝑝 is orthogonal to 𝑛. Now that we know the gradient

∇𝑓 (𝑎, 𝑏, 𝑐) = ⟨𝑓𝑥 (𝑎, 𝑏, 𝑐), 𝑓𝑦 (𝑎, 𝑏, 𝑐), 𝑓𝑧(𝑎, 𝑏, 𝑐)⟩

is the normal vector to our plane, we can directlywrite down the equation for the normal
at (𝑎, 𝑏, 𝑐):

∇𝑓 (𝑎, 𝑏, 𝑐) ⋅ ((𝑥, 𝑦 , 𝑧) − (𝑎, 𝑏, 𝑐)) = 0

and, after computing the dot product we can see it’s the same equation we already
know!

But knowing the normal vector also allows us to compute other geometric quantities
of interest: such as the normal line: the parametric line which intersects a level set
orthogonally.

This is also immediate: as if we know a point 𝑝 and a direction vector 𝑣 , the associated
line is ℓ(𝑡) = 𝑝 + 𝑡𝑣 . So here, the point is (𝑎, 𝑏, 𝑐) and the normal vector is ∇𝑓 (𝑎, 𝑏, 𝑐) so
the normal line is

ℓ(𝑡) = (𝑎, 𝑏, 𝑐) + 𝑡∇𝑓 (𝑎, 𝑏, 𝑐)
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12. The Gradient

Figure 12.4.: The gradient is normal to level sets, even in 3D. This makes it easy to use
the gradient to find the tangent plane to a level set.

Figure 12.5.: The normal line to a level set in three variables.
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12.4. Videos

Example 12.1. Compute the tangent plane and the normal line to 𝑥 = 𝑦2 + 𝑧2 + 1 at
(3, 1, −1).
First, we re-arrange so that the surface equation is written as a level set: 𝑥 − 𝑦2 −𝑧2 = 1
with all the variables on one side. Now we can compute the gradient:

∇𝑓 = ⟨1, −2𝑦, −2𝑧⟩ ∇𝑓 (3, 1, −1) = ⟨1, −2, 2⟩

This vector and the original point (3, 1, −1) immediately determine the plane and line:

⟨1, −2, 2⟩ ⋅ ⟨𝑥 − 3, 𝑦 − 1, 𝑧 + 1⟩ = 0
𝑥 − 2𝑦 + 2𝑧 = −1

ℓ(𝑡) = (3, 1, −1) + 𝑡⟨1, −2, 2⟩ = (3 + 𝑡, 1 − 2𝑡, −1 + 2𝑡)

12.4. Videos

12.4.1. Calculus Blue

https://youtu.be/Xxy_xvbMAew?si=sLgi-Xs2c_aEiEwg

https://youtu.be/tIuGAxwqM5M?si=GLhbfp1WgWi9zHGj

https://youtu.be/tIuGAxwqM5M?si=WK_PHSDEy9YKK4uX

https://youtu.be/SsBiqZ8JtRs?si=v4OuVbr3EM6WZ25M

12.4.2. Khan Academy:

https://youtu.be/tIpKfDc295M?si=2p92m3R1nyE9kXw4

https://youtu.be/_-02ze7tf08?si=A52-NJaNn9HU-jJj

https://youtu.be/N_ZRcLheNv0?si=IKKkK8H-9OthIxcB

Directional derivatives and slope:

https://youtu.be/4tdyIGIEtNU?si=tu21kvEpX00zAiJl

Why the gradient is the direction of steepest ascent:
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12. The Gradient

https://youtu.be/TEB2z7ZlRAw?si=IvKKBQjmEqL3Ej8m

The gradient and Contour Maps:

https://youtu.be/ZTbTYEMvo10?si=8u9asDeBoILbVY97

12.4.3. Example Problems

https://youtu.be/_qAPnUIrLqg?si=d6HSrlMLO3YezfNK

https://youtu.be/i9hhwAZ6hYs?si=5-oO4ScrIfpvLMvU

https://youtu.be/ErZGbQeWlAQ?si=UvQeAp2I12snMMP5

https://youtu.be/xBKhPZ5RgzQ?si=4Asi0yLE8RBPriFb

https://youtu.be/X3UjqMtWq9U?si=i8q8skju38xywdw7

https://youtu.be/GJODOGq7cAY?si=0O7PHxWj-HrH1C2O
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13. Extrema

We’ve developed some powerful tools for working with multivariable functions: we can
take their partial derivatives, directional derivatives, and understand the relationship
between the gradient and their level sets. Our next goal is to put this knowledge to
work and learn how to find maximal and minimal values. This is a critical skill in real
world applications, where we are looking to maximize efficiency, or minimize cost.

Definition 13.1 (Local Extrema). An extremum is a catch-all word for a maximum or a
minimum (its an extreme value, meaning either largest or smallest). A local minimum is
a occurs at a point 𝑝 = (𝑎, 𝑏) if the value of the function 𝑓 (𝑥, 𝑦) is always greater than or
equal to 𝑓 (𝑎, 𝑏), when 𝑥 is near 𝑎 and 𝑦 is near 𝑏. Analogously, a local maximum occurs
at (𝑎, 𝑏) if 𝑓 (𝑥, 𝑦) ≤ 𝑓 (𝑎, 𝑏) for all (𝑥, 𝑦) near (𝑎, 𝑏).

Figure 13.1.: Local Maxima and Minima of a function

In this section we will mainly be concerned with how to find local maxima and minima,
though in optimization we will often be after the maximal value or minimal value of the
function overall. These global maxima or minima are often just the largest or smallest
of the local extrema, so our first step will be to find the local counterparts, then sort
through them.

How can we find an equation to specify local extrema? In calculus I we had a nice
approach using differentiation: at a local max or min a function is neither increasing
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Figure 13.2.: At a local max or min, the gradient is zero.

nor decreasing so its derivative is zero. The same technique works here, where we
consider each partial derivative independently!

Theorem 13.1 (The Gradient at Extrema). At a local max or min, every directional
derivative is zero, because the point is a local max or min in every direction. In partic-
ular, all partial derivatives are zero, so the gradient is zero.

Definition 13.2 (Critical Points). The critical points of a function are the points where
the gradient is zero.

Like in Calculus I, we have to be careful as not all critical points are actually maxima
or minima. The standard example there is 𝑦 = 𝑥3 which has 𝑦 ′ = 3𝑥2 equal to zero at
𝑥 = 0, even though this is not the location of an extremum but rather a point of inflection.
Similarly, for multivariable functions the existence of a critical point does not imply the
existence of an extremum. The easiest and most common counter-example here is the
saddle:

Example 13.1 (Critical Points). Find the critical points of

𝑓 (𝑥, 𝑦) = 𝑥3 + 𝑦3 + 6𝑥𝑦

Solving the system of equations arising from setting the gradient to zero is the analog
of the first derivative test. What’s analog of the second derivative test? Here we need
to be able to take the second derivative, or to differentiate the gradient:
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Figure 13.3.: A saddle point also has gradient zero: it’s at the intersection of two contour
lines - meaning there are two directions where the function has zero deriva-
tive. It’s also the location of a maximum (in one direction) and a minimum
(in the other) meaning the directional derivative is zero here too!

Definition 13.3 (The Second Derivative Matrix). The second derivative of a function
𝑓 (𝑥, 𝑦) is the matrix of all four possible second order partial derivatives, much as the
first derivative (the gradient) was the vector of all possible first derivatives. This matrix
is often called the hessian and is denoted 𝐻𝑓 :

𝐻𝑓 = (𝑓𝑥𝑥 𝑓𝑥𝑦
𝑓𝑦𝑥 𝑓𝑦𝑦)

It’s helpful to recall that the order in which you take partial derivatives does not matter,
so 𝑓𝑥𝑦 = 𝑓𝑦𝑥 : the off-diagonal terms in this matrix are equal to one another.

But now we have to confront the problem of how to use this information to help us find
maxima andminima. As it turns out, the second derivativematrix stores the information
needed to build the best possible quadratic approximation to our function 𝑓 , just as
the first order partials stored the information needed for a linear approximation in the
gradient.

The way we read a matrix as a quadratic approximation is as follows: the matrix ( 𝑎 𝑏𝑏 𝑐 )
represents the quadratic 𝑎𝑥2 + 𝑏𝑥𝑦 + 𝑏𝑦𝑥 + 𝑐𝑦2. Because 𝑥𝑦 = 𝑦𝑥 we can simplify this
to

(𝑎 𝑏
𝑐 𝑑) ⟹ 𝑎𝑥2 + 2𝑏𝑥𝑦 + 𝑐𝑦2

To understand if our function has a max, min or saddle at a given critical point, its
enough to figure out if its quadratic approximation looks like a max min or saddle
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there! So, we need a way of telling whether or not the quadratic encoded by ( 𝑎 𝑏𝑏 𝑐 ) is a
paraboloid (max/min) or a saddle! The important tool here is the determinant (which
we already met when computing cross products)

𝐷 = det𝐻𝑓 = det (𝑓𝑥𝑥 𝑓𝑥𝑦
𝑓𝑦𝑥 𝑓𝑦𝑦) = 𝑓𝑥𝑥𝑓𝑦𝑦 − (𝑓𝑥𝑦 )2

Where againwe’ve used that 𝑓𝑥𝑦 = 𝑓𝑦𝑥 to simplify our formula. The sign of this quantity
determines whether the quadratic is a saddle:

Theorem 13.2. If 𝑝 is a critical point of 𝑓 (𝑥, 𝑦) and 𝐷 is the determinant of the second
derivative matrix at 𝑝, then

• 𝑝 is a saddle if 𝐷 < 0.
• 𝑝 is a minimum if 𝐷 > 0 and 𝑓𝑥𝑥 > 0
• 𝑝 is a maximum if 𝐷 > 0 and 𝑓𝑥𝑥 < 0
• Otherwise, the test is indeterminant.

It is possible to go beyond the quadratic approximation and understand the points this
test labels indeterminant, but this requires more complicated mathematics and rarely
shows up in real-world applications.

Its helpful to confirm this test is doing the right thing for examples we already under-
stand: so let’s take a quick look at a maximum, minimum and saddle:

Figure 13.4.: Local maxes and mins both have 𝐷 > 0.

108



13.1. Finding Maxima Minima and Saddles

Figure 13.5.: Saddle points have 𝐷 < 0.

13.1. Finding Maxima Minima and Saddles

Example 13.2 (𝑥2 + 𝑦2 − 2𝑥 − 6𝑦 + 14).

Example 13.3 (𝑥3 + 𝑦3 + 6𝑥𝑦 ).

Example 13.4 (2𝑥3 − 𝑦𝑥 + 6𝑥𝑦2).

13.2. Sketching Multivariate Functions

Having precise mathematical tools to understand the critical points of a function allows
us to understand the total behavior of the function - because it gives us the tools to
draw a contour plot! Here’s an example: say we ran the above computations and found
a function with three critical points: a max a min and a saddle.

We plot and label them on an 𝑥𝑦 plane, and then we can draw little local models of
what the contours must look like nearby, since we know the contours for maxes mins
and saddles!

Next, since there are no other critical pointswe know there isn’t anything else interesting
going on in our function’s behavior. So, we can extend this to a drawing of the contour
plot for the whole function by first extending the lines that already exist in a way that
they do not cross (if they crossed anything else, that would be representing a new saddle-
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Figure 13.6.: Sketching local information from the critical points.

but we know there are none!) And then, we can just fill in contour lines in a non-
intersecting way essentially uniquely, so that they create no new saddles or closed loops
(which would have a new max or min in their center!)

Figure 13.7.: Expanding this to an entire contour plot.

The observation that makes this possible is that nothing strange can happen away from
a critical point: if the first derivative is nonzero, then the function is simply increasing or
decreasing (in some direction), and the level sets nearby locally look like a set of parallel
lines! This is a gateway to a huge amount of modern and advanced mathematics called
morse theory

https://stevejtrettel.site/code/2023/contour-slicing/

This technique remains important even beyond scalar functions, where changes in con-
tours signify changes in the topology of a shape!

https://stevejtrettel.site/code/2023/morse-function/
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13.3. Videos

13.3.1. Calculus Blue

https://youtu.be/J1HS6hmBtC0?si=pM8eYtifjLOADcCJ

https://youtu.be/XLe0YMZkh70?si=lMgHpAA-QvMQlJFB

https://youtu.be/7ncgs04-Epw?si=zAChu5xahRhnBm10

https://youtu.be/ZtmglCu_XE8?si=ViVsdognIGyYNcU_

13.3.2. Khan Academy

https://youtu.be/ux7EQ3ip2DU?si=9ssdihUGBJDexoOF

https://youtu.be/8aAU4r_pUUU?si=phRaS8458TaUeHBS

https://youtu.be/nRJM4mY-Pq0?si=bRJpT9axN_QsCiBF

https://youtu.be/m1FhUjMMv30?si=9GQxrx9DVAhd7kpX

https://youtu.be/sJo7D74PAak?si=JBmJT4Gelk2G29hb

Example Problem:

https://youtu.be/shWXeUn5BHk?si=4vhAu1mjaXFaf-zO

https://youtu.be/TqslX-bUTD8?si=IH5wv4HwsajoqUnp

13.3.3. Example Problems

https://youtu.be/RqRnKry9L3g?si=uNPUQnwhgfSand_I

https://youtu.be/Yirl8OvO3tU?si=9WtKpDsp7jtDlERl

https://youtu.be/odkaPgWPQGo?si=-8zT4yHo5HR_dryb

https://youtu.be/xl-4T8ak8Eg?si=ptjIrk2jzeQTlX0_
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13. Extrema

13.3.4. Optimization Example Problems:

https://youtu.be/nb-_bs6eSYo?si=QNnkoVg3FcDY22Oc

https://youtu.be/laKOfcVjrlc?si=cDg2tDsLthqXWZa9

https://youtu.be/PWAWxpG1zjg?si=1BBKqjw_IOubwn2T
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14. Constrained Optimization

Realistic optimization problems often involve some sort of a constraint:

• What is the best product we can make, with a fixed budget?
• What is the most efficient rocket we can build of a fixed mass?
• What is the least expensive building design, given the external factors of material
and labor costs?

Abstractly, all of these questions ask the following: what are the extreme values of 𝑓 (𝑥, 𝑦)
given that we constrain the points (𝑥, 𝑦) by some function, 𝑔(𝑥, 𝑦) = 𝑐? In this section, we
learn a couple methods to deal with such questions.

14.1. Method I: Reduce Dimension by Substitution

The first method is just to solve the constraint for one of the variables, and substitute it
into the function you wish to optimize. This forces the inputs to that function to obey
the constraint - so now you can just

Example 14.1. Maximize 𝑧 = 4 − 2𝑥2 − 3𝑦2 + 𝑥 − 𝑦 subject to the constraint 𝑥 + 𝑦 − 2.

This also works in higher dimensions: we can take a problem of three variables with
one constraint and turn it into a problem of two variables with no constraints:

Example 14.2. Find the maximum value of 𝑥𝑦𝑧 subject to the constraint 𝑥 + 𝑦 + 𝑧 = 1.

Unfortunately, this entire method relies on being able to solve the constraint for a given
variable, and substitute it in! But this is often impossible. Most relations of two variables
can’t be solved for one or the other variable indpendently.
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14. Constrained Optimization

14.2. Method II: Lagrange Multipliers

What arewe to do, if we cannot substitute the constraint in? It helps to back up and think
geometrically here: in a two variable problem, we can draw the function 𝑧 = 𝑓 (𝑥, 𝑦) as
a surface in ℝ3, and the constraint 𝑔(𝑥, 𝑦) = 𝑐 as a curve in the domain (the 𝑥𝑦 plane).
The values of 𝑓 (𝑥, 𝑦) which satisfy the constraint

Figure 14.1.: Looking for maxima along a constraint.

It’s even more helpful to draw this as a contour plot with level sets. The constraint (our
hiker’s trajectory) still appears as a curve, but we can easily read off exactly where our
hiker is going uphill or downhill by looking at how they are crossing contours.

Whenever the hiker is crossing a contour they are either increasing or decreasing in
elevation, and so cannot be at an extremum. Indeed - extrema can only occur at locations
where the hiker is not crossing a level set - that is, where their path is tangent to a level
set! This is the fundamental insight

Extrema occur when the constraint is tangent to a level set.

Everything follows from this: but the work is in turning this qualitative insight into
a system of equations. The first observation we can make is that the constraint itself
𝑔(𝑥, 𝑦) = 𝑐 is a level set - just of a different function. So

Extreme values of 𝑓 along the constraint 𝑔(𝑥, 𝑦) = 𝑐 occur when this con-
straint level set is tangent to a level set of 𝑓 .
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14.2. Method II: Lagrange Multipliers

Figure 14.2.: Viewing a constraint problem with level sets.

Figure 14.3.: The fundamental insight of constrained optimization.
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14. Constrained Optimization

But this relation of is tangent to is still difficult to deal with. To help, we remember that
the gradient vector is perpendicular to level sets! Thus, ∇𝑓 and ∇𝑔 are both perpendic-
ular to their level sets, and thus these vectors must be parallel since the level sets are
tangent.

Extreme values of 𝑓 occur along 𝑔(𝑥, 𝑦) = 𝑐 whenever ∇𝑓 is parallel to ∇𝑔.

Now we’ve really made some progress! We just need to remember that parallel means
are scalar multiples of each other and give this scalar multiple a name: it’s traditional
name is the greek letter 𝜆

Extreme values of 𝑓 occur along 𝑔(𝑥, 𝑦) = 𝑐 when there exists a constant 𝜆
with ∇𝑓 = 𝜆∇𝑔.

This is now a fully precise, quantitative claim: it tells us that we can find the constrained
extrema by solving a system of equations!

{∇𝑓 (𝑥, 𝑦 , ) = 𝜆∇𝑔(𝑥, 𝑦)
𝑔(𝑥, 𝑦) = 𝑐 }

Recalling that the gradient is the vector of partial derivatives, this is just the system of
equations

{
𝑓𝑥 (𝑥, 𝑦) = 𝜆𝑔𝑥 (𝑥, 𝑦)
𝑓𝑦 (𝑥, 𝑦) = 𝜆𝑔𝑦 (𝑥, 𝑦)

𝑔(𝑥, 𝑦) = 𝑐
}

This has three variables and three unknowns, so generically we will be able to find some
finite number of solutions! Unfortunately there is no general strategy for solving such
equations, other than the “substitute one into the other and think about it” technique
familiar from precalculus.

It’s illustrative to re-do the original example from the substitution section using the
method of multipliers. :::{#exm-lagrange-1} Maximize 𝑧 = 4 − 2𝑥2 − 3𝑦2 + 𝑥 − 𝑦 subject
to the constraint 𝑥 + 𝑦 − 2. :::

Example 14.3. Maximize 𝑥2 + 2𝑦2 subject to the constraint 𝑥2 + 𝑦2 = 1

Example 14.4. Find the maximum value of 𝑥𝑦𝑧 subject to the constraint 𝑥 + 𝑦 + 𝑧 = 1.
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14.3. Optimization and Inequalities:

14.3. Optimization and Inequalities:

For dealing with an inequality, we need to break the problem into two cases: when the
constraint is an equality, we can do the same process we have been learning above, with
either Lagrange multipliers or substitution. And, inside of the constraint, we can do our
more standard two dimensional optimization (finding critical points, sorting into maxes
and mins), and be careful only to consider critical points that are inside the domain we
care about: if the constraint is x2+y2<1$ and you find a critical point (3, 0) you can ignore
it, but the critical point (1/2, 1/2) needs to be considered.

This will result in you having two sets of potential extrema: those occurring on the
inside, and those occurring on the boundary. How do you find the absolute max (or
min)? That’s easy! Just take the largest (or smallest) overall result.

Example 14.5. Maximize 𝑥2 + 2𝑦2 subject to the constraint 𝑥2 + 𝑦2 ≤ 1
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15. Double Integrals

We now begin a new chapter - after studying in detail various means of studying change
via multivariate differentiation, we will switch to study accumulation via multivariate
integration. As Calculus I and II focused on defining the integral of a single variable over
a 1-dimensional region (the closed interval [𝑎, 𝑏]), we will continue in Calculus III to
define the integral of multivariate functions over two and three dimensional regions.

15.1. Riemann Sums and Iterated Integrals

In one dimension, an integral measures the area under a graph by breaking in into slices,
and adding up approximate areas of each slice, via a Riemann sum, before taking a limit.
We will begin with a similar process here, we define the double integral of a function
𝑓 (𝑥, 𝑦) over a region 𝑅 in the plane by a two dimensional Riemann sum.

https://stevejtrettel.site/code/2022/riemann-sum-2d/

This two dimensional Riemann sum works by breaking the region 𝑅 into small rectan-
gular regions which we will denote Δ𝐴, choosing a point (𝑥𝑖, 𝑦𝑗) in each such region,
and then summing

𝑁
∑
𝑖=1

𝑁
∑
𝑗=1

𝑓 (𝑥𝑖, 𝑦𝑗)Δ𝐴

As the number of regions goes to infinty, and the size of each rectangle Δ𝐴 goes to zero,
this becomes an integral, with Σ becoming ∫ and Δ becoming 𝑑 :

∬𝑅
𝑓 (𝑥, 𝑦)𝑑𝐴

This measures the volume under the graph of 𝑓 above the region 𝑅, instead of the area
under a curve. But how do we evaluate this thing? We can either add up the volume
of each row with constant 𝑥 first, to get a function of 𝑦 , and then add these up, or the
opposite: first add up in rows of 𝑦 to get a function of 𝑥 , then add these up. Either way,
we add up all the little volumes, and this gives the total volume under the surface.
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15. Double Integrals

You can see this in the animation below: where one of the side bar graphs gives the
result of summing along rows first, the other columns, and these two side graphs have
the same total area under their curves.

https://stevejtrettel.site/code/2022/fubini

15.2. Rectangular Domains

Let 𝑅 be the region 𝑎 ≤ 𝑥 ≤ 𝑏 and 𝑐 ≤ 𝑦 ≤ 𝑑 . Say we want to compute the integral
∬𝑅 𝑓 (𝑥, 𝑦)𝑑𝐴. By the observation above (Fubini’s theorem) we can compute this by
integrating all the 𝑥 ’s first then integrating 𝑦 , or vice versa:

∬𝑅
𝑓 (𝑥, 𝑦)𝑑𝐴 = ∫

𝑏

𝑎
(∫

𝑑

𝑐
𝑓 (𝑥, 𝑦)𝑑𝑦) 𝑑𝑥 = ∫

𝑑

𝑐
(∫

𝑏

𝑎
𝑓 (𝑥, 𝑦)𝑑𝑥) 𝑑𝑦

https://stevejtrettel.site/code/2023/iterated-integral-cartesian

This is a massive simplification: it means that we can compute two dimensional inte-
grals by just doing two one dimensional integrals, one after the other!

Example 15.1. Evaluate ∬𝑅 𝑥2𝑦 𝑑𝐴 for 𝑅 = [1, 2] × [3, 4]

Example 15.2. Evaluate ∬𝑅 𝑥(3 − 𝑦2) 𝑑𝐴 for 𝑅 = [0, 2] × [1, 2]

Oftentimes, the order one performs the integrals in does not matter - both are equally
straightforward. But this is not always the case!

Example 15.3. Integrate 𝑦 sin(𝑥𝑦) over the region 𝑅 = {0 ≤ 𝑥 ≤ 1, 0 ≤ 𝑦 ≤ 𝜋}.
Try both orders, see which is easier!

Sometimes, when the function you are integrating is a product of a function of 𝑥 and a
separate function of 𝑦 , things can simplify even further! If 𝑓 (𝑥, 𝑦) = 𝑔(𝑥)ℎ(𝑦) then we
may write

∬𝑅
= ∫

𝑏

𝑎 ∫
𝑑

𝑐
𝑔(𝑥)ℎ(𝑦)𝑑𝑦𝑑𝑥 = (∫

𝑏

𝑎
𝑔(𝑥)𝑑𝑥) (∫

𝑑

𝑐
ℎ(𝑦)𝑑𝑦)

We get this by realizing that 𝑔(𝑥) is a constant with respect to the 𝑦 integral so we can
pull it out: but then once we have done the 𝑦 integral the result is a constant, so we can
pull it out of the 𝑥 integral!
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15.3. Variable Boundaries

Example 15.4. Compute

∬𝑅
𝑒𝑥 sin(𝑦)𝑑𝐴

On the region 𝑅 = [0, 𝜋/2] × [0, 𝜋/2].

This is essentially all there is to the theory of multiple integrals when the domain is a
box (where all variables are bounded by constants). Indeed, we will shortly meet triple
integrals and see that everything remains precisely the same!

∫𝑅 𝑔(𝑥, 𝑦 , 𝑧)𝑑𝑉 = ∫
𝑏

𝑎
(∫

𝑑

𝑐
(∫

𝑓

𝑒
𝑔(𝑥, 𝑦 , 𝑧)𝑑𝑧) 𝑑𝑦) 𝑑𝑥

However, before going there we will continue on and look at more general double inte-
grals: what happens when the region 𝑅 is not a box?

15.3. Variable Boundaries

In one variable calculus, the only sort of region over which you could perform an inte-
gral is a single interval. But in two variables, the regions of the plane over which you
could wish to integrate are much more varied!

We have learned how to deal with rectangular regions by slicing - and this same tech-
nique will serve us well in many other cases. To start, we won’t focus on completely
general regions, but rather on regions where the top and bottom are bounded by func-
tions of 𝑥 :
Here, if we slice with respect to 𝑦 first, our vertical slices will each be of a different length
- but they will still always be intervals (the top and bottom are functions meaning they
pass the vertical line test - so each intersects the vertical strip exactly once).

At the fixed value 𝑥 , what is the interval we are integrating over? Well, it runs from the
bottom function 𝑎(𝑥) to the top function 𝑏(𝑥), and so the integral along this slice is
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15. Double Integrals

Figure 15.1.: A region where the top and bottom boundaries are functions of 𝑥

Figure 15.2.: Vertical slices of such a region are intervals.
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15.3. Variable Boundaries

∫
𝑑(𝑥)

𝑐(𝑥)
𝑓 (𝑥, 𝑦)𝑑𝑦

Then all that remains is to integrate this along the 𝑦 direction:

∬𝑅
𝑓 (𝑥, 𝑦)𝑑𝐴 = ∫

𝑏

𝑎 ∫
𝑑(𝑥)

𝑐(𝑥)
𝑓 (𝑥, 𝑦)𝑑𝑦𝑑𝑥

https://stevejtrettel.site/code/2023/iterated-integral-variable-bounds

Exercise 15.1. Find the integral of 𝑥 + 2𝑦 over the region 𝑅

𝑅 = {(𝑥, 𝑦) ∣ 0 < 𝑥 < 2 𝑥2 − 2 < 𝑦 < 𝑥}

Sometimes the 𝑥 bounds don’t even need to be given explicitly-they are just the region
between where the curves intersect:

Exercise 15.2. Find the volume above the 𝑥𝑦 plane under the graph of 𝑧 = 𝑥2 + 𝑦2,
within the region 𝑅 bounded by 𝑦 = 2𝑥 and 𝑦 = 𝑥2.

There’s nothing special about slicing with respect to the 𝑥 direction, we can also do
integrals by slicing with respect to fixed 𝑦 , and integrating 𝑑𝑥 first. Indeed, the above
example can be redone this way no problem!

Figure 15.3.: Slicing the same region either vertically or horizontally.
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15. Double Integrals

Exercise 15.3. Find the volume above the 𝑥𝑦 plane under the graph of 𝑧 = 𝑥2 + 𝑦2,
within the region 𝑅 bounded by 𝑦 = 2𝑥 and 𝑦 = 𝑥2, this time first slicing horizontally,
with constant 𝑦 .

However, not every example is just as easy both ways. For example the following in-
tegral is easy to write down sliced with respect to 𝑦 , but harder when sliced first with
constant 𝑥 :

Exercise 15.4. Integrate 𝑥 + 𝑦 on the region 𝑅 determined by

𝑅 = {(𝑥, 𝑦) ∣ −2 < 𝑦 < 2 𝑦2 − 1 < 𝑥 < 3}

15.3.1. Changing the Order of Integration

To do the last integral instead with respect to slices of constant 𝑥 (so, slices in the 𝑦
direction) we would need to solve for the 𝑦 bounds as a function of 𝑥 ,

Exercise 15.5. Set up the integral of 𝑥 + 𝑦 on the region

𝑅 = {(𝑥, 𝑦) ∣ −2 < 𝑦 < 2 𝑦2 − 1 < 𝑥 < 3}

Where slicing is first done at constant 𝑥s.

One of themost important things about setting up a double integral correctly is thinking
through which order of integration will be more useful, and why. Sometimes, one way
of slicing will lead to an impossible integral, but the other way will be easy!

Example 15.5. Compute the integral

∫
1

0 ∫
1

𝑥
sin(𝑦2)𝑑𝑦𝑑𝑥

by switching the order of integration first.
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15.4. Combining Integrals

15.4. Combining Integrals

Just like there is a subdivision rule for one dimensional integrals,

∫
𝑏

𝑎
𝑓 𝑑𝑥 = ∫

𝑐

𝑎
𝑓 𝑑𝑥 + ∫

𝑏

𝑐
𝑓 𝑑𝑥

There is a similar rule for double integrals: if you break the domain into two regions,
the double integral over the whole thing is the sum of the double integrals over each.
In symbols: if 𝑅 = 𝑅1 ∪ 𝑅2, then

∬𝑅
𝑓 𝑑𝐴 = ∬𝑅1

𝑓 𝑑𝐴 +∬𝑅2
𝑓 𝑑𝐴

This lets us perform integrals we otherwise could not, by breaking the domain down
into simpler pieces, which we can then slice with respect to either 𝑥 or 𝑦 .
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16. Triple Integrals

Triple integrals follow a very similar general theory to double integrals: starting with a
function 𝑓 (𝑥, 𝑦 , 𝑧) on ℝ3, we define the integral over a region 𝐸 by breaking that region
into small cubical volumes of size 𝑑𝑉 and building a 3-dimensional riemann sum. Taking
the limit gives the triple integral, or

∭𝐸
𝑓 𝑑𝑉

To evaluate such an expression, we need to break the integral into slices, and evaluate
them one at a time. Such slicing relies on understanding the volume element in three
dimensions, which is the volume of an infinitesimal box

𝑑𝑉 = 𝑑𝑥𝑑𝑦𝑑𝑧

This lets us separate the triple integral into three consecutive integrals: first dx, then dy
then dz. Or, because the order of multiplication doesn’t matter, we could do the integral
in any of the other six possible orders

𝑑𝑥𝑑𝑦𝑑𝑧 = 𝑑𝑥𝑑𝑧𝑑𝑦 = 𝑑𝑦𝑑𝑥𝑑𝑧

= 𝑑𝑦𝑑𝑧𝑑𝑥 = 𝑑𝑧𝑑𝑥𝑑𝑦 = 𝑑𝑧𝑑𝑦𝑑𝑥

16.1. Different Bounds:

16.1.1. Boxes

When the domain 𝐸 ⊂ ℝ3 is a coordinate box, described as

𝐸 = {(𝑥, 𝑦 , 𝑧) ∣ 𝑎 ≤ 𝑥 ≤ 𝑏 𝑐 ≤ 𝑦 ≤ 𝑑 𝑒 ≤ 𝑧 ≤ 𝑓 }

This triple integral splits into an iterated integral with constant bounds:

129



16. Triple Integrals

∭𝐸
𝐹𝑑𝑉 = ∫

𝑏

𝑎 ∫
𝑑

𝑐 ∫
𝑓

𝑒
𝐹𝑑𝑧𝑑𝑦𝑑𝑥

This integral could be done in any of the six possible orders, as all the bounds are con-
stants, no order will be easier or harder than any other.

16.1.2. Variables in One Bound

If the domain 𝐸 is described so that its bounds in at two of the variables are constants,
and the third set of bounds are variables, then there is a preferred order in which to
integrate. In particular, we know the final answer must be a number so we cannot have
variables in the outermost set of bounds, and must be done earlier: the easiest situation
is just to do it first!

For example, consider the following domain 𝐸:

𝐸 = {(𝑥, 𝑦 , 𝑧) ∣ 0 ≤ 𝑥 ≤ 2, 0 ≤ 𝑦 ≤ 3, 0 ≤ 𝑧 ≤ 𝑥 + 𝑦}

Here the 𝑧 bound is different depending on which point (𝑥, 𝑦) you are at, so we do the
𝑧-integral first. Since both the 𝑥 and 𝑦 bounds are constants

∭𝐸
𝑓 𝑑𝑉 = ∫

2

0 ∫
3

0 ∫
𝑥+𝑦

0
𝑓 𝑑𝑧𝑑𝑦𝑑𝑥

16.1.3. Variables in Two Bounds

For more complicated domains, its possible that variables will appear in two of the
bounds. (Because the final answer must be a number, we know the outer bounds must
be constants, so they cannot appear in all three bounds).

In such cases, the innermost integral can have bounds depending on two variables (the
next two to be integrated), and the middle integral can have bounds depending on the
outermost integral. This way, at each stage the function only has variables left in it that
are still going to be integrated away, and the result is a number. In this case, there is
only one possible order in which the integral can be performed!

Here’s an example: if 𝐸 is the following region

𝐸 = {−𝑦 ≤ 𝑥 ≤ 𝑦𝑧, 0 ≤ 𝑦 ≤ 𝑧 + 1, −1 ≤ 𝑧 ≤ 1}
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16.2. Describing the Bounds:

Then a triple integral must be performed with 𝑑𝑥 first, then 𝑑𝑦 , and finally 𝑑𝑧:

∭𝐸
𝑓 𝑑𝑉 = ∫

1

−1 ∫
𝑧+1

0 ∫
𝑦𝑧

−𝑦
𝑓 𝑑𝑥𝑑𝑦𝑑𝑧

16.2. Describing the Bounds:

The thing that makes triple integrals challenging is not doing the integrals (its just three
1D integrals) or even choosing the order to do them in (as we saw above, once you have
described the domain in terms of 𝑥, 𝑦 , 𝑧, its easy to decide which order to do the integral.)
The difficult part is often just describing the bounds themselves!

This is mostly because visualizing 3D geometry takes some training to get used to! It’s
helpful to look throughmany examples: please remember to be using the book (chapter
15), where each chapter is essentially just a giant list of example problems fully worked
out! Additionally, Here is another collection of fully worked examples online:.

16.3. Video Resources
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17. Integrals & Coordinates

We’ve seen previously that certain double and triple integrals are particularly challeng-
ing because their bounds contain complicated expressions like √1 − 𝑥2, which lead to
you having to do an integral of functions containing things like √1 − 𝑥2 which leads to
difficult trigonometric substitutions, or worse.

These sort of expressions come up when integrating over circular, cylindrical and spher-
ical regions, because these are all described with equations like 𝑥2 +𝑦2 = 1 or 𝑥2 +𝑦2 +
𝑧2 = 1 in ℝ2 or ℝ3. And this chapter is the bearer of good news: the reason these in-
tegrals look hard at first is that the cartesian coordinates 𝑥, 𝑦 , 𝑧 are not a good way to
work with them. But, after adapting our viewpoint, all the square roots melt away and
these integrals become straightforward to compute!

The reason is that cartesian coordinates are good for describing flat objects: the sur-
faces where one variable is held constant describe lines or planes. Thus, integrals over
rectangles and boxes are easy in cartesian coordinates: their bounds are constants! To
make integrals over circles, cylinders and spheres easy, we need to find coordinates for
which circles, cylinders and spheres are described by constants. If we can change our
perspective to work with these coordinates, we will be able to turn an integral with
difficult bounds into a different integral with constant bounds - but the same overall
value.

17.1. Polar Coordinates

Polar coordinates are a means of representing the plane using distance 𝑟 from the origin,
and angle 𝜃 from the 𝑥-axis.
Using trigonometry, we can relate these to the usual 𝑥 and 𝑦 coordinates we are used
to.

Definition 17.1 (Polar Coordinates). Polar coordinates on the plane are the coordinates
𝑟 , 𝜃 where 𝑟 measures the distance from the origin, and 𝜃 measures the angle from the
𝑥−axis. The conversion from cartesian to polar coordinates is given by the functions
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17. Integrals & Coordinates

Figure 17.1.: Polar Coordinates definition.

𝑥 = 𝑟 cos 𝜃 𝑦 = 𝑟 sin 𝜃

Definition 17.2 (dA in Polar Coordinates).

𝑑𝐴 = 𝑟𝑑𝑟𝑑𝜃

This lets us do a double integral in polar coordinates by first doing an 𝑟 integral, and
then a 𝜃 integral or vice-versa:

∬𝑅
𝑓 𝑑𝐴 = ∫

𝜃2

𝜃1
∫
𝑟2

𝑟1
𝑓 𝑟𝑑𝑟𝑑𝜃

Just like in cartesian coordinates, you can view this as slicing in teh 𝑟 and 𝜃 directions,
and integrating the results.

https://stevejtrettel.site/code/2023/iterated-integral-polar

Starting from an integral with cartesian coordinates 𝑥, 𝑦 , there is a straightforward pro-
cedure to convert to polar:

• Convert the function to polar coordinates: substitute 𝑥 = 𝑟 cos 𝜃 and 𝑦 = 𝑟 sin 𝜃
and simplify (remember 𝑥2 + 𝑦2 = 𝑟2).

• Substitute 𝑑𝐴 or 𝑑𝑥𝑑𝑦 for the polar area unit 𝑑𝐴 = 𝑟𝑑𝑟𝑑𝜃 .
• Rewrite the bounds of integration in terms of polar coordinates.

Now you just have a standard iterated integral (but with variables named 𝑟 and 𝜃 instead
of 𝑥 and$ y$.) This can be computed as normal: just doing one integral at a time.
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17.2. Cylindrical Coordinates

Example 17.1.

17.2. Cylindrical Coordinates

Cylindrical coordinates are just the natural three dimensional extension of polar coor-
dinates, where we use 𝑟 , 𝜃 , and 𝑧.

Figure 17.2.: Cylindrical coordinates definition

Definition 17.3 (Cylindrical Coordinates). Measure two directions in space using polar
coordinates, and the orthogonal direction with its standard Cartesian axis. If we convert
the 𝑥𝑦 plane to polar, this means

𝑥 = 𝑟 cos 𝜃
𝑦 = 𝑟 sin 𝜃

𝑧 = 𝑧

The volume element here is just the polar area element times 𝑑𝑧:

Definition 17.4 (Volume in Cylindrical Coordinates).

𝑑𝑉 = (𝑑𝐴)𝑑𝑧 = 𝑟𝑑𝑟𝑑𝜃𝑑𝑧

I’ve recorded example videos of this, for our asynchronous lecture day! The video links
are available on canvas.
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Figure 17.3.: Defining spherical coordinates.

17.3. Spherical Coordinates

Spherical coordinates is a coordinate system in ℝ3 where we represent a point with
latitude, longitude, and radius.

Definition 17.5 (Spherical Coordinates).

𝑥 = 𝑟 cos 𝜃 sin 𝜙

𝑦 = 𝑟 sin 𝜃 sin 𝜙
𝑧 = 𝑟 sin 𝜙

Using these coordinate definitions we can compute the volume element in spherical
coordinates: it’ll be a product of the length in the 𝑟 direction, the length in the 𝜃 direction
and the length in the 𝜙 direction.

• Length in the 𝑟 direction is 𝑑𝑟 .
• Circles in the 𝜃 direction (lines of longitude) have circumference 2𝜋𝑟 sin 𝜙. Thus
a small amount of angle has length 𝑟 sin 𝜙𝑑𝜃 .

• Circles in the 𝜙 direction are all longitudes on the sphere, of length 2𝜋𝑟 . Thus a
small bit of angle has length 𝑟𝑑𝜙.

Definition 17.6 (Volume in Spherical Coordinates).

𝑑𝑉 = 𝑑𝑟(𝑟 sin 𝜙𝑑𝜃)(𝑟𝑑𝜙)

= 𝑟2 sin 𝜙𝑑𝑟𝑑𝜃𝑑𝜙

For examples of doing integrals in spherical coordinates, I recorded videos and posted
them to our course Canvas page for the asynchronous lecture.
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17.4. Video Resources

Figure 17.4.: Surfaces of 𝑟 , 𝜃 , 𝜙 = constant.

17.4. Video Resources
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Part V.

Homework
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Assignment 1

This assignment concerns the topics covered in Dimensions, Vectors and Oper-
ations

Dimensions

This question has two parts. Be sure to answer both.

Suppose you are trying to train an AI algorithm for the United States Mail service, that
takes in a picture of a box being shipped, and estimates from that photograph the length,
width and height of the box. That way, the computer software can quickly take a picture
of a stack of boxes, and design an algorithm for how to most efficiently stack them on
the truck.

Exercise 17.1. Part 1: Assume that the input photos are taken in black and white (so,
each pixel needs only one color to specify) and of size 100 pixels wide and 75 pixels
tall. As mathematics students, we realize this AI is really just performing a high dimen-
sional function: it is taking as input one of these images, and returning its estimate of
length,width and height as its output. What is the dimension of the domain (the inputs),
and what is the dimension of the range (the outputs)?

Part 2: What would these dimensions change to if in the future you are asked to up-
date the software to take HD color images (with red green and blue specified for every
pixel on a 1920 × 1080 computer screen), and the program was to estimate not just the
dimensions of the box, but also it’s weight, and the length of time it will take to reach
its destination?

Vector Addition

This question has two parts. Make sure to answer both.

You are in charge of controlling a robotic arm which has five joints, and so its con-
figuration in space can be modeled by an 5-tuple of numbers, one specifying the the
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configuration of each joint. That is, the first number tells the first joint how much to
move, the second number tells the second joint how to move, etc.

Exercise 17.2. Part 1: Starting from the “off” position, which corresponds to the point
(0, 0, 0, 0, 0), the robot is programmed to do the following sequence of events:

• Move Motor One by 1 unit.
• Move Motor Two by 2 units.
• Leave Motor 3 fixed.
• Move Motor 4 backwards 1 unit.
• Leave Motor 5 fixed

What is the vector that represents this command to the robot?

Part 2: After this, the robot is programmed to move a along the vector in direction
⟨1, 1, 1, 1, 0⟩ of length 4. This leaves the robot arm at some new configuration in space.
At this point, youwish to return the robot arm to its starting location (0, 0, 0, 0, 0). What
direction vector should you command the robot to follow so that it does so?

Figure 17.5.: A robot arm with a 5 dimensional configuration space.

When you write your answer, show all your work and explainwhat you are doing in full
sentences where necessary to make it so a classmate could easily follow your solution.
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Diagonal of a Cube

Diagonal of a Cube

This question has three parts. Make sure to answer all three.

Figure 17.6.: A cube, its face diagonal, and main diagonal, in 3 dimensional space.

Exercise 17.3. Part 1: What angle does the diagonal of a cube make with one of its
faces? To calculate this, we can find the angle between the vector 𝑑 which represents
the diagonal of the entire cube, and the vector 𝑓 which represents the diagonal of one
of the faces. Use the geometry of dot products to get cos 𝜃 by hand, and then use a
calculator to find 𝜃? (Make sure you state if your answer is in degrees or radians).

Part 2: Why does the side length of the cube not matter in the calculation above?

Part 3: What is the angle between the diagonal of a 4-dimensional cube and one of its
3-dimensional faces?

Hint: choose a size for the cube, and assign coordinates to its vertices. Then use these
coordinates to determine the vectors corresponding to each of the diagonals.

When you write your answer, show all your work and explainwhat you are doing in full
sentences where necessary to make it so a classmate could easily follow your solution.
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Solutions

Dimenions

Question 1: The domain is a space of images. If photos are 100 × 75 pixels, there are
7,500 pixels in an image. If the image is black and white we need one real number
to specify each pixel, so we need 7, 500 numbers total to specify the image: thus, the
domain is 7, 500-dimensional, or ℝ7500. The range is three dimensional or ℝ3, as we
want the computer to output for each image three real numbers: a length (1), width (2)
and height (3). Thus, our function is a map

AI∶ ℝ7500 → ℝ3

Question 2: Color images require three numbers per pixel, so the dimension of the
space is going to be three times the number of pixels. An HD image has 1920 × 1080 =
2, 073, 600 pixels, so the domain will be 3 × 2, 073, 600 = 6, 220, 800 dimensional. The
output will now be a point in ℝ5 as we want to predict two additional numbers, for a
total of five: length width height weight and delivery time. Thus the new function is

AI∶ ℝ6,220,800 → ℝ5

Vector Addition

Following the procedure, we start at (0, 0, 0, 0, 0) to give the command that corresponds
to the sequence of steps we want the robot to follow, we make a vector that has in the
𝑛𝑡ℎ slot what we want the robot to do: here, that is

⟨1, 2, 0, −1, 0⟩
Performing this command, we add this to the original vector, which is (0, 0, 0, 0, 0) and
we reach the configuration (1, 2, 0, −1, 0).
Next, we are asked to move the robot in the direction 𝑣 = ⟨1, 1, 1, 1, 0⟩ by a vector of
length 4. To do so, we first need to find the length of 𝑣 :

‖𝑣‖ = √12 + 12 + 12 + 12 + 02 = √4 = 2
To make this vector length 4, we need to scalar-multiply it by 2, to double its length.
This gives us the vector

2𝑣 = ⟨2, 2, 2, 2, 0⟩
Adding this to our current robot configuration gives the resulting one:
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(1, 2, 0, −1, 0) + ⟨2, 2, 2, 2, 0⟩ = (3, 4, 2, 1, 0)

Finally, we are asked to figure out what command to give the robot to get from here
back to its starting configuration (0, 0, 0, 0, 0). Remember, if you want to find a vector
from a point 𝑝 to a point 𝑞, you need to subtract the starting point from the ending point:
𝑢 = 𝑞 −𝑝. In our case, this means we want to subtract where we are at (3, 4, 2, 1, 0) from
where we want to end up (0, 0, 0, 0, 0) to get

(0, 0, 0, 0, 0) − (3, 4, 2, 1, 0) = ⟨−3, −4, −2, −1, 0⟩

Which is the final command we want to send the robot.

Diagonal of a Cube

Question 1: Let’s choose our cube to be a unit cube, and lets put one of its vertices
at (0, 0, 0). This means it also has vertices one unit along the 𝑥, 𝑦 , and 𝑧 axes at
(1, 0, 0), (0, 1, 0), (0, 0, 1). Filling in the rest of the vertices we have:

Figure 17.7.: One way of labeling all the cube’s vertices. We pick one to be (0, 0, 0) and
then its neighbors are (1, 0, 0), (0, 1, 0) and (0, 0, 1). The remaining labels
are determined by vector addition!

145



Assignment 1

We will write both of our diagonals as originating at the upper left corner, which is
labeled (0, 0, 1) in the diagram above. This means we want to compute the face diagonal
by subtracting this from its other endpoint, the far vertex (1, 1, 1):

𝑓 = (1, 1, 1) − (0, 0, 1) = ⟨1, 1, 0⟩
Similarly, we compute the main diagonal by subtracting the starting vertex from its end
(1, 1, 0):

𝑑 = (1, 1, 0) − (0, 0, 1) = ⟨1, 1, −1⟩

We’ve succeeded in turning the entire problem into vectors, so now we can answer it
with vector tools! The angle 𝜃 between 𝑓 and 𝑑 is defined by the dot product

cos 𝜃 = 𝑓 ⋅ 𝑑
‖𝑓 ‖‖𝑑‖

Computing what we need:

𝑓 ⋅ 𝑑 = ⟨1, 1, 0⟩ ⋅ ⟨1, 1, −1⟩ = 1 + 1 + 0 = 2

‖𝑓 ‖ = √12 + 12 + 02 = √2
‖𝑑‖ = √12 + 12 + (−1)2 = √3

Thus,

cos 𝜃 = 2
√2√3

⟹ 𝜃 = arccos (√2
√3

) ≈ 0.61547rad

Question 2: The side length of the cube didn’t matter as if we had made the cube side
length 𝑠, then all of the vectors above would have been multiplied by 𝑠. This would have
made both ‖𝑓 ‖ and ‖𝑑‖ longer by a factor of 𝑠, so the denominator would have grown by
a factor of 𝑠2. But since both of 𝑓 and 𝑑 were multiplied by 𝑠, the dot product 𝑓 ⋅ 𝑑 would
also have grown by a factor of 𝑠2, and this would have cancelled the denominator! Thus,
no matter how long the cube sides are, 𝑓 ⋅𝑑

‖𝑓 ‖‖𝑑‖ would be the same number, so 𝜃 would be
the same.

Question 3: To run this argument in four dimensions, we can no longer picuture what
is going on directlym but need to extrapolate. We took the “base point” in our picture
to be (0, 0, 1) in 3D, so perhaps we take (0, 0, 0, 1) as the base point in ℝ4. Making the
analogs of 𝑑 and 𝑓 we find

𝑓 = (1, 1, 1, 1) − (0, 0, 0, 1) = ⟨1, 1, 1, 0⟩
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𝑑 = (1, 1, 1, 0) − (0, 0, 0, 1) = ⟨1, 1, 1, −1⟩

Running the same computation as above we find

𝑓 ⋅ 𝑑 = 3 ‖𝑓 ‖ = √3 ‖𝑑‖ = √4 = 2

cos 𝜃 = 𝑓 ⋅ 𝑑
‖𝑑‖‖𝑓 ‖ =

3
2√3

= √3
2

Unlike in 3𝐷 this is one of the angles we know from the unit circle, so we can compute
𝜃 exactly!

𝜃 = 𝜋
6 ≈ 0.52359rad

147





Assignment 2

This assignment concerns the topics covered in Operations and Shapes

Dot Products and Image Processing

You are writing software to deal with images on a smartphone, and hope to automati-
cally sort similar photos into groups to make things more convenient for the user. In-
ternally to the phone, assume that a photo is stored as an ordered array of numbers
representing the color of each pixel (as three numbers, one for each of red, green and
blue). The picture below shows how a very simple 2 × 2 pixel image is represented as a
list of 12 numbers, which is a vector in ℝ12.

Figure 17.8.: Pixels in an image as components of a vector.

While it is very difficult to teach a computer how to understand the content of a pho-
tograph from the values of its pixels, it is easy to perform vector operations on a photo-
graph since they are stored as arrays of numbers. In particular, its possible to measure
the magnitude of a photograph stored as the vector ⟨𝑝1, 𝑝2, 𝑝3, 𝑝4, … , 𝑝𝑛⟩ using the 𝑛-
dimensional Pythagorean theorem, and the dot product between this image and another
⟨𝑞1, 𝑞2, … , 𝑞𝑛⟩ is computed as 𝑝 ⋅ 𝑞 = ∑𝑛

𝑖=1 𝑝𝑖𝑞𝑖.
Say that your software recieves three new photographs taken by the phone, call them
photos 𝐴 = ⟨𝑎1, … 𝑎𝑛⟩, 𝐵 = ⟨𝑏𝑖⟩ and 𝐶 = ⟨𝑐𝑖⟩. The computer immediately computes the
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following quantities:

|𝐴| = 1050 |𝐵| = 2040 |𝐶| = 3012

𝐴 ⋅ 𝐵 = 1, 934, 567 𝐵 ⋅ 𝐶 = 143 𝐴 ⋅ 𝐶 = −192, 456

Exercise 17.4. Which two photos do you think are of the same object? Why? (Hint: can
you figure out the ‘angle’ between these images in high dimensional space?). When you
write your answer, show your work and explain what you are doing in full sentences
where necessary so a classmate could easily follow your solution.

Planes and Perpendicularity

Exercise 17.5. In three dimensions, any two planes that are not parallel intersect each
other in a line. If 3𝑥 + 2𝑦 − 𝑧 = 4 and 𝑥 − 𝑧 = 16 are two such planes, find a vector 𝑣
that is parallel to the line they intersect in.

Hint: can you find a vector that is perpendicular to each plane? How can you use these to
find a third vector which is parallel to both planes?

Figure 17.9.: Two planes intersecting along a line in 3 dimensional space.

When you write your answer, show all your work and explainwhat you are doing in full
sentences where necessary to make it so a classmate could easily follow your solution.
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Shapes

Exercise 17.6. The plane 𝑦 = 3 intersects the sphere 𝑥2 + 𝑦2 + 𝑧2 − 2𝑥 − 4𝑦 + 1 = 0 in
a circle. What’s the radius of this circle?

When you write your answer, show all your work and explainwhat you are doing in full
sentences where necessary to make it so a classmate could easily follow your solution.
You should not just tell me the number, or give me a few lines of unjustified algebra!

Hint: If all points on the plane have their 𝑦 coordinate equal to 3, then every point on the
circle we are interested in also has 𝑦 = 3…can you use this to get an equation only in terms
of 𝑥 and 𝑧?

Figure 17.10.: A sphere intersects a plane in a circle.

Solutions

Dot Products and Image Processing

Using the relationship of dot products and angles, we can figure out what the angle
between each pair of images are. To label them, I’ll write 𝜃𝐴𝐵 for the angle between 𝐴
and 𝐵, and so on:

cos 𝜃𝐴𝐵 = 𝐴 ⋅ 𝐵
‖𝐴‖‖𝐵‖
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cos 𝜃𝐵𝐶 = 𝐵 ⋅ 𝐶
‖𝐵‖‖𝐶‖

cos 𝜃𝐴𝐶 = 𝐴 ⋅ 𝐶
‖𝐴‖‖𝐶‖

We know all the quantities on the right hand side here from the problem statement, so
finding the inverse cosine of these on a calculator we get the below: I’ve computed them
in degrees as that’s a more intutitive unit for some people:

𝜃𝐴𝐵 = 25.4235∘

𝜃𝐵𝐶 = 89.9986∘
𝜃𝐴𝐶 = 91.7948∘

When are two points near each other in space, if all we know is the angle between them?
Its easiest to think about real life - if you point at two locations in the distance, are those
two places close to eachother if your arms are making a small angle, or a big angle? A
small angle! So, the images that are closest to one another in the space of images are
those with a small angle between them as viewed from the origin. The vectors 𝐴 and 𝐵
are only a 25 degree angle apart, whereas the other two pairs are almost orthogonal to
one another. Thus, 𝐴 and 𝐵 must be two images of the same thing, and 𝐶 is an image
of something very different!

Planes and Perpendicularity

Given the planes 3𝑥+2𝑦−𝑧 = 4 and 𝑥−𝑧 = 16, we can easily find a normal vector to each
of them by the vector of coefficients: for the first plane, this is the vector 𝑛1 = ⟨3, 2, −1⟩
and for the second plane, this is 𝑛2 = ⟨1, 0, −1⟩.
This is of course not what we want in the end at all! We want a vector that lies in both
planes. But here’s the trick: if you can find a vector 𝑣 which is perpendicular to 𝑛1, then
its perpendicular to the vector that’s perpendicular to everything in Plane 1: it must be
in plane 1! (This is like the vector calculus version of “the enemey of my enemy is my
friend: the perpendicular of my perpendicular is my parallel”).

So - any perpendicular to 𝑛1 is parallel to plane 1, and any perpendicular to 𝑛2 is parallel
to plane 2. So, if we could find a vector perpendicular to both of these, we would have a
vector parallel to both planes! And we have a tool to do exactly this: the cross prodcut

𝑛1 × 𝑛2 = |
̂𝚤 ̂𝚥 �̂�
3 2 −1
1 0 −1

|
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= ̂𝚤 |2 −1
0 −1| − ̂𝚥 |3 −1

1 −1| + �̂� |3 2
1 0|

= −2 ̂𝚤 + 2 ̂𝚥 − 2�̂� = ⟨−2, 2, −2⟩

This is a vector thats parallel to both planes.

Shapes

Every point on the plane 𝑦 = 3 has its 𝑦 coordinate…equal to 3! So, to intersect this
plane with our sphere we can plug 𝑦 = 3 into the equation for the sphere, to get an
equation taking place just in the 𝑥𝑧 plane: 𝑥2 + 32 + 𝑧2 − 2𝑥 − 4(3) + 1 = 0. Simplifying
this, we see the circle we are interested in is

𝑥2 − 2𝑥 + 𝑧2 = 2

To figure out what the radius of this circle is, we need to write it in standard form:
something like (𝑥 − ℎ)2 + (𝑧 − 𝑘)2 = 𝑟2: then we could just read off the radius 𝑟 . Thus -
we’ll need to complete the square.

Looking at just the 𝑥 ’s, we have 𝑥2 − 2𝑥 . We can see that if we had 𝑥2 − 2𝑥 + 1 it would
factor as (𝑥 − 1)2, so we can do a little trick of adding zero in a clever way:

𝑥2 + 2𝑥 = 𝑥2 − 2𝑥 + (1 − 1)
= (𝑥2 − 2𝑥 + 1) − 1
= (𝑥 − 1)2 − 1

Substituting this back into the main equation, we see

𝑥2 − 2𝑥 + 𝑧2 = (𝑥 − 1)2 − 1 + 𝑧2 = 2

Putting all the constants on one side we have managed to reach standard form

(𝑥 − 1)2 + 𝑧2 = 3

so the radius is 𝑟 = √3.
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This assignment concerns the topics covered in Parameterization

1. Parameteric Curves in the Sciences

GPS technology is frequently used by biologists to track organisms and understand
their migration habits. This has particularly been helpful for learning about animals
that range over large or uninhabited areas - a fun example being the tracking of great
white sharks in the Pacific ocean! Here’s a live tracker of some sharks off the coast if
you want to see where they are right now. https://www.ocearch.org/tracker/ Below is
the tracking data from a particular shark’s locations in the winter of 2014:

Figure 17.11.: GPS tracking data for a Great White off the California coast.

Exercise 17.7. Part 1: Let shark(𝑡) be the parametric curve giving the location of
the tracked shark. What dimension is the output of this curve? (Is it a curve in 2d,
3d, 4d space?). What are some reasonable coordinates you could write this curve in?
(Like, what physical meaning could you attach to the different entires of the parametric
curve?)
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Part 2: What are some questions that scientists might ask about a great white shark’s
life? How could you translate these into questions about the parametric curve shark(𝑡)
so that they could be answered with GPS data?

There are plenty of different correct answers to this question!

2. Designing Parametric Curves

Exercise 17.8. Create a parametric curve 𝑓 (𝑡) = (𝑥(𝑡), 𝑦(𝑡)) in the plane ℝ2 looks like
the following (it doesn’t have to look exactly like this)

Figure 17.12.: A spiral whose radius asymptotes to 2.

More precisely, find a parametric equation with the following properties:

• As 𝑡 increases in [0, ∞), the curve 𝑓 (𝑡) spirals around the origin at a uniform rate.
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3. Finding Intersections

• At the beginning 𝑓 (0) = (0, 0) and then the spiral approaches a radius of 2 closer
and closer, but never quite reaches it as 𝑡 → ∞.

Hint: draw a graph of what you want the radius function to look like, then try to build
such a function! There are infinitely many correct answers to this question, but explain
your answer and how you came to it.

3. Finding Intersections

In class we saw how to parameterize the intersection between two surfaces in three
dimensional space. At the beginning, it was helpful to have a picture of the surfaces
(like a cylinder and a plane) that wewere intersecting to get some intuition, but it turned
out we didn’t need a picture at all if we just tried methodically to build the parametric
equation up one step at a time, starting from the equationwith less variables andmoving
to the one with more.

The same tricks work in higher dimensions and are a powerful tool for mathematicians
to understand shapes that we can never hope to see. In this problem, you are going to
parameterize the intersection between three differen three dimensional spaces inside of
four dimensional space!

Exercise 17.9. The three spaces are described in the Cartesian coordinate system
(𝑥, 𝑦 , 𝑧, 𝑤) as follows:

• The space 𝑥2 + 𝑤2 = 4
• The space 𝑤 + 𝑧3 = 1
• The space 𝑥 + 𝑦 + 𝑧 = 1.

What is a parametric curve 𝑟(𝑡) = (𝑥(𝑡), 𝑦(𝑡), 𝑧(𝑡), 𝑤(𝑡)) that traces out their intersection
in four dimensional space?

When you write your answer, do not just give an equation instead, explain each step of
your thought process in full sentences: the goal of this homework is to improve mathemat-
ical reasioning and communication skills!
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Solutions

Parametric Curves in the Sciences

There are tons of correct answers to this question. Perhaps you modeled the sharks
position as a curve into ℝ2, by tracking the latitude and longitude of the shark. Or
maybe you wanted to track its location in 3d by recording latitude longitude and depth:
then it would be a function into ℝ3. OR - even though time is the input of the curve,
maybe you wish to also store the time paramter in our output data: then it would be a
curve into 4-dimensional space. Any of these are valid answers, depending on how you
want to record things.

Questions you could ask:

• What is the farthestwest the shark swam this year? Thiswould become a question
about “what is the maximum value of 𝑦(𝑡)” if 𝑦 is the component of the sharks
position measuring longitude (east/west diretion).

• What is the fastest the shark swam? This would be a question about the speed
‖shark′(𝑡)‖, and the maximum value of this.

• Did the shark ever stop swimming? This would be a question about the shark’s
velocity: is shark′(𝑡) ever equal to zero?

Designing Parametric Curves

Because we want the curve to spin around at a constant rate, we know we should start
with our usual parameterization of the unit circle (cos 𝑡 , sin 𝑡). We want to modify this
into a spiral, so we will multiply it by a radius function 𝑟(𝑡) to get a curve

𝑐(𝑡) = (𝑟(𝑡) cos(𝑡), 𝑟(𝑡) sin(𝑡))

The problem gives us some constraints on what 𝑟(𝑡) should be: it needs to be zero at
𝑡 = 0 and needs to asymptote to 2 as 𝑡 → ∞. This gives us a good sense of what its
graph should look like:

Any functionwhose graph looks sort of like thiswill do. There are plenty of possibilities!
Here are a couple

• You could remember from calculus that the function arctan(𝑥) is zero at 𝑥 = 0,
has an asymptote at 𝜋/2. Thus, 4/𝜋 arctan(𝑥) has an asymptote at 2, and would
work.
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Figure 17.13.: A possible function radius(𝑡).

Figure 17.14.: The curve 4
𝜋 arctan(𝑡)(cos(𝑡), sin(𝑡)).
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• You could build a function with an asymptote at 2 as a rational function, for ex-
ample 2𝑥/(𝑥 + 1).

Figure 17.15.: The curve 2𝑡
𝑡+1 (cos(𝑡), sin(𝑡)).

Finding Intersections

Here we are given three hypersurfaces in four dimensional space, so we cannot picture
exactly what is going on, but we can do the mathematics exactly analogous to what
we’ve done in 2 and 3 dimensions.

The equations we have available are:

𝑥2 + 𝑤2 = 4 𝑤 + 𝑧3 = 1 𝑥 + 𝑦 + 𝑧 = 1

The first two each deal with only two variables at a time, so either of these is a good
spot to start. Let’s start with the first one: we see 𝑥2 + 𝑤2 = 4, which we recongize as
the equation of a circle. Thus we can parameterize these two coordinates in terms of a
parameter 𝑡 as

(𝑥(𝑡)𝑤(𝑡)) = (2 cos 𝑡2 sin 𝑡 )

Now the second equation involves a 𝑤 , so we can substitute what we learned above into
it, getting 2 cos 𝑡 + 𝑧3 = 1. We can then solve this for 𝑧, to figure out what it must be:

𝑧 = 3√1 − 2 sin 𝑡
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Now we know 𝑥(𝑡), 𝑧(𝑡) and 𝑤(𝑡) so all we need to find is 𝑦(𝑡). But the third equation
has a 𝑦 in it, so we can solve for 𝑦

𝑦 = 1 − 𝑥 − 𝑧
= 1 − 2 cos(𝑡) − 3√1 − 2 sin 𝑡

Putting this all together, we get a parametric curve for all of 𝑥, 𝑦 , 𝑧, 𝑤 :

𝑐(𝑡) =
⎛
⎜
⎜
⎝

𝑥(𝑡)
𝑦(𝑡)
𝑧(𝑡)
𝑤(𝑡)

⎞
⎟
⎟
⎠
=
⎛
⎜
⎜
⎝

2 cos 𝑡
1 − 2 cos(𝑡) − 3√1 − 2 sin 𝑡

3√1 − 2 sin 𝑡
2 sin 𝑡

⎞
⎟
⎟
⎠
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This assignment concerns the topics covered in Calculus and Geometry of
Curves

Problems

Mission to an Asteroid

This question has a rather involved story. Make sure to understand it fully before start-
ing the problem, and draw yourself lots of pictures!

Background Story: One proposed method of preventing a future catastrophe like the
impact that killed all non-avian dinosaurs 66 million years ago is asteroid redirection,
where a spacecraft is launched at the dangerous asteroid and impacts it at a high velocity,
slightly deflecting the asteroids trajectory and causing it to miss Earth. Such a redirect
was attempted for the first time last year in 2022, when NASA’s dart mission impacted
the asteroid Dimorphous, a 500ft rock in a relatively near-earth (but non-dangerous!)
orbit. Here’s the rather overly dramatic “trailer video” from NASA about the mission:

https://youtu.be/nHBuVbGkmBY?si=rzDTpWd7X1wbaRoB

The important science goals of the mission were to:

• (1) see how much the asteroid was deflected after the impact, and
• (2) understand better the physics of high-speed collisions, to be able to model
re-direct possibilities more accurately in the future. Objective (1) was able to
be accomplished by earth-based telescopes carefully plotting its trajectory in the
night sky, but objective (2) required data from near the asteroid itself: ideally
actual photographs of the impact moment. Unfortunately the DART spacecraft
was unable to send such images back itself, as it impacted the asteroid at a speed
of 4.1 miles per second and was instantly vaporised into plasma.
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Here’s an actual video shot by the spacecraft on approach. Obviously, the video feed
cuts out when the space ship hits the asterioid!

https://youtu.be/N-OvnVdZP_8?si=0ZF1VRalLCqNegc5

To get the crucial data back to earth, a small pair of italian-built cubesats were carried
with DART, and released just days before the impact. These cube sats traveled on a
slightly modified trajectory that just missed the asteroid, and so were able to take real-
time photographs of the impact. One of these photographs is included below. You can
clearly see the actual impact (bright spot with debris flying out into space) as well as the
asteroid’s moon glowing bright in the glow of the molten material created. This image
has been extremely crucial in understanding the actual physics of the impact.

Figure 17.16.: The DART spacecraft impacting the asteroid, as viewed from the accom-
panying cube-sat

The Problem Statement: In this problem, you are to imagine that you are a member
of NASA’s DART team, and are tasked with the planning of these very important shots.
Fix a system of coordinates (𝑥, 𝑦 , 𝑧) (where 𝑥, 𝑦 and 𝑧 are measured in hundreds of miles)
such that the asteroid is at the origin for all time. You propose a flight trajectory for the
cubesat which departs (at 𝑡 = 0) three days before the impact, which takes the cubesat
on the following parametric curve.

𝑐(𝑡) = (𝑡 − 2, √𝑡 − 𝑡
2 , 0)
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The image below is a schematic of the flight path of the cubesat (red) and the impactor
(orange).

Figure 17.17.: The trajectory of the DART impactor (yellow), and the flightpath of the
cubesat (red) that is going to take a photograph.

The cubesat is oriented so that it remains tangent to its flightpath at all times.

Exercise 17.10.

• At the time of the impact (t=3), how far is the cubesat from the asteroid?
• If the cubesat wants to take a picture of the impact, what angle must it rotate its
camera by (where angle zero means the camera is pointed straight ahead, tangent
to the flight path).

Ideas to compute this:

• Can you find the position of the cubesat at the time the asteroid is impacted by
the main craft?

• Can you find the direction vector from the cube sat to the asteroid at this time?
• Can you find the direction the cubesat is pointed at this time?
• Can you find the angle between these?

Logo Design, Part I

Both this question and the next concerned wtih using the calculus of parametric curves
to help with graphic design. Assume your graphic design firm is hired to produce a new
logo for a company, and you decide on the following form:
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Figure 17.18.: Your proposal for a new fancy logo.

This is made out of a square (the bounding box) and two curves, both of which are copies
of the same parametric curve given below

𝑐(𝑡) = (𝑡3 − 𝑡, 𝑡2)

Figure 17.19.: The parametric curve 𝑐(𝑡) defining your logo’s main pieces.

Exercise 17.11. The curve defining your logo makes a sort of teardrop shaped loop in
the middle. What is the inside angle of this teardrop?

Ideas to compute this:

• Can you find the location where the curve intersects itself?
• Can you find the two times when the curve is at that location?
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Figure 17.20.: The angle on top of the teardrop.

• Can you find the tangent vectors to the curve there, and make sure they are point-
ing in the right direction for the angle you want (possibly, negate one of them:
think about the direction the curve is traveling in)!

• Can you use the dot product as a tool to get your answer?

Logo Design, Part II

A lot of thought goes into the design of a logo, and geometric designs are often used to
build simplicity and elegance into the final product. Below are some examples of logos,
with the underlying geometry on display:

Sometimes the graphic design team goes a little too far into geometry, metaphor, and
meaning behind a logo. If you’d like a good laugh check out the Pepsi Logo Redesign

Like Apple’s logo, at every point except the hard corner formed by the intersections
(whose angle we computed in the last problem) we can approximate our logo by circles!
Drawing a few of these gives the following geometric design (which we may submit to
the company that hired us as part of the packet describing the geometry and meaning
behind the logo).

Our goal here is to figure out how to actually compute these circles. We will focus on
only a couple of them, drawn on the curve 𝑐(𝑡) itself below.

Exercise 17.12.
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Figure 17.21.: Twitter’s old logo was made entirely of circles. Now its made entirely of
the letter X.

Figure 17.22.: Apples’ logo also incorporates many circles, some of which are exact
pieces of the logo, and others of which are the “best approximating cir-
cles” at a point - such as near the top of the fruit. You can also see the
logarithmic spiral (𝑒𝑡 cos 𝑡 , 𝑒𝑡 sin 𝑡) in the design!
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Figure 17.23.: The logo for iCloud is also made of circles, where the ratio of radii is the
golden ratio!

Figure 17.24.: The best approximating circles to our logo at various points, much as in
Apple’s logo design.
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Figure 17.25.: The best approximating circle at the very bottom of the teardrop, and the
smallest best approximating circles, which occur at two points along the
inside of the teardrop.

• The grey circle below is the circle which best approximates our logo at the very
bottom of the teardrop shape. What is its radius?

• The two black circles are the two smallest circles that fit inside the teardrop shape.
What’s an approximate value for their radii?

Ideas to compute this:

• Can you compute the curvature 𝜅(𝑡) of the logo’s curve as a function of 𝑡?
• For the bottom of the teardrop: what is the value of 𝑡 for which 𝑐(𝑡) is exactly at
the bottom (you should be able to find this by hand, looking at the equation for
𝑐(𝑡)). What is the curvature there?

• What is the relationship between curvature and the size of the best approximating
circle?

• Can you put your function 𝜅(𝑡) into desmos, and use the graph to figure out what
the radius of the smallest circles must be?

Solutions

Mission to an Asteroid

The cubesat is following the trajectory 𝑐(𝑡) = (𝑡 − 2, √𝑡 − 𝑡
2 , 0), so at the time of impact,

(𝑡 = 3) the cubesat is at the position

𝑐(3) = (3 − 2, √3 − 3
2) = (1, √3 − 3

2 , 0)
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The distance from the origin is just the magnitude of this vector:

dist = √(1)2 + (√3 − 3
2 )2 + 02

= √1 + 3 − 3√3 + 9
4

= √
25
4 − 3√3

≈ 1.0265707

To find the angle we need to rotate the camera, we need to first know two vectors:

• The vector tangent describing the direction the cubesat is pointed in
• The vector toAsteroid describing the direction from the cubesat to the asteroid.

We begin with the second of these. The asteroid is at the position 𝑂 = (0, 0) for all time.
Thus, the direction vector from the cubesat to the origin is

end − start = 𝑂 − 𝑐(3)
= (0, 0, 0) − (1, √3 − 3

2 , 0)
= (−1, 32 − √3, 0)

To find the direction the cubesat is facing, we need to find the tangent vector to its
trajectort 𝑐(𝑡) at 𝑡 = 3.

𝑐′(𝑡) = (1, 1
2√𝑡

+ 1
2 , 0)

𝑐′(3) = (1, 1
2√3

+ 1
2)

Now, we just need to find the angle between these two vectors. To do this, we can use
the identity

cos 𝜃 = 𝑢 ⋅ 𝑣
‖𝑢‖‖𝑣‖

Since the vector pointing at the asteroid is the negative of the position vector of the cube-
sat, its magnitude is the same as the distance to the asteroid, that we already found.
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‖toAsteroid‖ ≈ 1.0265707

The magnitude of the tangent vector is

‖tangent‖ =
√
1 + ( 1

2√3
+ 1
2)

2 ≈ 1.273580962

Finally we need their dot product

toAsteroid ⋅ tangent = (−1, 32 − √3, 0) ⋅ (1, 1
2√3

+ 1
2)

= (−1)(1) + (32 − √3) ( 1
2√3

+ 1
2)

≈ −1.1830

Putting these together we can compute the cosine of the angle:

cos 𝜃 ≈ −1.1830
(1.27358)(1.0265) ≈ −0.9053

This means that 𝜃 ≈ arccos(−0.9053) which is 2.7029 radians, or 154.868 degress.

Logo Design I

The looped part of the new logo design is described by the parametric function 𝑐(𝑡) =
(𝑡3 − 𝑡, 𝑡2). First, we try to understand what direction this curve is being traced out by
the parameterization. When 𝑡 = −2 the 𝑥-coordinate of our function is (−2)3 − (−2) =
−8 + 2 = −6, whereas when 𝑡 = 2 its (2)3 − 2 = 6. Thus, as 𝑡 increases we see the
𝑥 coordinate going from negative to positive, so the curve is being traced from left to
right.

Another way to have done
this part is just to look at
the two equations and see
that 𝑡 = ±1 gives the same

answers for each!

To find the spot where the loop crosses itself, we need to find two different 𝑡 values that
reach that same (𝑥, 𝑦) point on the curve. Because the 𝑦 coordinate 𝑦 = 𝑡2 is an even
function it maps 𝑡 = 𝑎 and 𝑡 = −𝑎 to the same point for any 𝑎. But since 𝑥(𝑡) = 𝑡3 − 𝑡
is an odd function we have 𝑥(−𝑎) = −𝑥(𝑎). And the only time 𝑥(𝑎) can equal −𝑥(𝑎) is if
they are both zero (thats the only number equal to its own negative)! Thus, we know
𝑥(𝑎) = 0 so 𝑎3 = 𝑎, or 𝑎 = ±1.
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Figure 17.26.: The direction the parametric curve is traced.

These are then our two time values, 𝑡 = −1 and 𝑡 = 1, which both map to the point
𝑐(1) = (0, 1). To find the angle of the teardrop at this point, we need to find the derivative
of 𝑐(𝑡) and both 𝑡 = −1 and 𝑡 = 1.
This is just a calculation

𝑐′(𝑡) = ⟨3𝑡2 − 1, 2𝑡⟩
𝑐′(−1) = ⟨2, −2⟩ 𝑐′(1) = ⟨2, 2⟩

These are the velocity vectors of the curve at the two points it crosses through (0, 1).
To help us out, let’s draw them quick, remembering the direction the curve is being
traced.

Figure 17.27.: The tangent vectors at 𝑡 = ±1.

To find the angle of the teardrop, we need the two vectors tangent to the teardrop’s angle.
From the above, we see that the tangent vector at 𝑡 = −1 is in the correct direction, but
the one at 𝑡 = 1 is in the wrong direction: we need to negate it! Thus, the two vectors
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we are interested in are ⟨2, −2⟩ and ⟨−2, −2⟩. Again using the relationship of angles to
the dot product,

cos 𝜃 = ⟨2, −2⟩ ⋅ ⟨−2, −2⟩
‖⟨2, −2⟩‖‖⟨−2, −2⟩‖

= −2 + 2
√8√8

= 0

Thus, 𝜃 = 𝜋/2 or 90 degrees.

Logo Design II

The curvature of a curve is the reciprocal of the radius of the best approximating circle.
Thus, the first step here is to find the curvature of our logo’s curve. For this, we can use
the formula relating curvature to the curve’s first and second derivatives:

𝜅(𝑡) = ‖𝑐′(𝑡) × 𝑐′′(𝑡)‖
‖𝑐′(𝑡)‖3

We have computed the first derivative above, and differentiating again gives both veloc-
ity and acceleration.

𝑐′(𝑡) = ⟨3𝑡2 − 1, 2𝑡⟩
𝑐′′(𝑡) = ⟨6𝑡, 2⟩

We find the cross product of the two vectors we add in a zero for the 𝑧 component, and
use the determinant formula.

𝑐′(𝑡) × 𝑐′′(𝑡) = |
̂𝚤 ̂𝚥 �̂�

3𝑡2 − 1 2𝑡 0
6𝑡 2 0

|

= �̂�((3𝑡2 − 1)(2) − (2𝑡)(6𝑡))
= −(6𝑡2 + 2)�̂�

Then the magnitude of this,
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‖𝑐′ × 𝑐′′‖ = ‖⟨0, 0, −6𝑡2 − 2⟩‖
= 6𝑡2 + 2

and also the magnitude of 𝑐′.

‖𝑐′(𝑡)‖ = √(3𝑡2 − 1)2 + (2𝑡)2
= √9𝑡4 − 2𝑡2 + 1

Now we have all the components, and can assemble the curvature!

𝜅(𝑡) = 6𝑡2 + 2
(9𝑡4 − 2𝑡2 + 1)3/2

Phew! Now we can finally answer the questions we are interested in. To answer the
first, we need to find the curvature at the bottom of the loop. This is directly below
where the durve intersects itself, which we learned in the previous part occurs at 𝑥 = 0.
Thus this point must also be at 𝑥 = 0: the only other time value that gives this is 𝑡 = 0,
so this is where we need the curvature!

𝜅(0) = 6(0)2 + 2
(9(0)4 − 2(0)2 + 1)3/2 = 2

Thus, the radius of the best approximating circle is

𝑅 = 1
2

For the second part, we are looking for the smallest approximating circles inside the
teardrop, whichmeanswewant to find themaximum value of curvature between 𝑡 = −1
and 𝑡 = 1. This function does not look fun to differentiate and set equal to zero, so we
will take the problem’s suggestion and put it into desmos to look for the max:

Desmos shows that the maximum occurs around 𝑡 = 0.422 with 𝜅 ≈ 3.425, so the radius
of the smallest circles is

𝑅 = 1
𝜅 ≈ 0.2919
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Figure 17.28.: The curvature function 𝜅(𝑡)
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Study Guide I

Write a study guide for yourself in preparation for Midterm I.
You can write the guide however helps you most, but here are some possible sug-
gestions:

• Write down the important definitions for each topic you want to review. Explain
them in your own words!

• Either come up with an example problem (or find one on WebAssign) for each
topic you want to review, and write out its solution by hand! You’ll be handwrit-
ing soltuions on the exam, so this is a good way to get yourself in that mindset
and away from online work.

• For each topic you want to review, write to yourself how confident you are with it
(maybe on like a 1-10 scale, if that’s helpful to you): this way when you’re study-
ing you can look back and easily remember which things you were struggling
with.

• If there’s multiple ways to do something, make a note of that for yourself!

Below I’ve made a short list of the topcis we’ve covered so far which could appear on the
exam. (This is essentially a table of contents for the first two sections of our notes, but
will be helpful to those who are primarily reading the textbook instead). I will ensure
test problems only cover the below topics.

Space

Dimensions

• What is the dimension of a space? Can you calculate the dimension of various
example spaces (surface of the earth, a space of images, configuration space of a
robot, etc).

• Be comfortable using cartesian coordinates and 𝑛-tuples to represent points in
space. Understand polar and cylindrical coordinates as alternative methods to
represent points using 𝑛-tuples.

• Be able to use the distance function in ℝ𝑛.
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Vectors

• Know the difference between a point (location) and a vector (direction + magni-
tude). Be able to give examples of quantities that are points versus vectors.

• Be able to use vector addition and scalar multiplication. Understand how they
work geometrically as well as in terms of cartesian coordinates.

• Be able to compute the magnitude of a vector, find the unit vector in a given
direction, and combining these - find a vector of a given length in the direction
of another vector.

• Be familair with the two notations for vectors using 𝑛-tuples ⟨𝑥, 𝑦 , 𝑧⟩ as well as
𝑖𝑗𝑘 notation 𝑥 ̂𝚤 + 𝑦 ̂𝚥 + 𝑧�̂�.

Operations

Dot Product

• Know the formula for the dot product, and be able to use it. Know how the dot
product interacts with vector addition and scalar multiplication.

• Understand the relationship between the dot product and angles. Be able to find
the angle between two vectors (you will not have a calculator, so it is fine if your
answer looks like arccos(3/4) or something on the test.) Know the definition of
orthogonality, and how to test if two vectors are orthogonal with the dot product.

• Be able to compute the scalar and vector projections of one vector onto another.

Cross Product

• Know how to compute the cross product using determinants. Be able to compute
the cross product of the standard basis vectors ̂𝚤, ̂𝚥 , �̂� using the “circle” diagram.

• Understand the geometric meaning of the cross product, the right hand rule, and
the connection between the length of the cross product and the area of a parallel-
ogram.

I will not test you on: The vector triple product 𝑎 ⋅ (𝑏 × 𝑐) - even though you do already
know the dot product and the cross product!
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Curves

Shapes

• Know both the implicit equations and parametric equations for a line. Be able to
find the equation of a line given two points, or a point on the line and a direction
vector. Be able to find the normal vector to an implicit line.

• Know both the implicit equations and parametric equations for a plane.
• Be able to find the normal vector to an implicit plane and to a parametric plane.
• Be able to find the equation of a plane (whichever form is easier for you) given
some information (for example: a point and a normal vector, or a point and two
vectors, or three points)

• Know the implicit and parametric equations for a circle of radius 𝑅 centered at
(ℎ, 𝑘).

• Know the implicit equation for spheres in ℝ3, and be able to find their center and
radius (perhaps by completing the square)

• Understand the relationship between the equation for a circle in 2D and a cylinder
in 3D.

I will not test you on: The parametric equation for a sphere, or the other shapes we
briefly talked about (hyperboloids, ellipsoids, etc.)

Curves

Parameterizations

• Know the definition of parametric curves in both 2 and 3 dimensions. Be able to
parameterize graphs of functions.

• Understand that there may be multiple different parameterizations for the same
curve, and be able to tell when this happens (if the coordinates of each parame-
terization satisfy the same relationship: like (𝑡, 𝑡) and (𝑡3, 𝑡3) both satisfy 𝑦 = 𝑥).

• Be able to parameterize the intersection of surfaces in space, by using the equa-
tions of the surfaces one at at time to solve for 𝑥, 𝑦 , 𝑧 in terms of a parameter 𝑡 .
(Example: intersection of a cylinder and a plane, from class)

• Understand how operations like scalar multiplication affect the shape of a para-
metric curve. Be able to turn a circle into a spiral or a helix, etc by changing the
parameterization slightly.

Calculus

• Know how to take limits of a parametric curve (via the limit of each component)
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• Know why you can take the derivative of a parametric curve component by com-
ponent (applying the limit definition of the derivative, and then breaking it up
into individual limits using hte first point.)

• Understand the geometric meaning of the derivative (a tangent vector to the
curve) as well as its physical meaning (the velocity the particle tracing out the
curve is moving), and of its magnitude (the speed).

• Know how to differentiate vector functions with different products (we have three
products now, scalar multiplication, the dot product, and the cross product - so
we have three product rules)!

• Be able to integrate a vector function, and understand its meaning: recovering
velocity from acceleration, or displacement from velocity.

Geometry

• Be able to write down the arc length integral for a curve. Be able to compute the
actual arclength when this integral is simple.

• Determine whether or not a curve is parameterized by arclength by checking if
its derivative is unit length.

• Find the unit tangent vector to a curve.
• Know the definition of the normal vector to a curve, and be able to find the normal
vector in simple cases.

• Know the formula for the curvature of a parametric curve 𝑟 in terms of its first
and second derivatives. Understand how we were able to simplify this when the
curve was a graph 𝑟(𝑡) = (𝑡, 𝑓 (𝑡), 0).

• Understand the relationship between curvature and the radius of the best approx-
imating circle.

Differential Equations

• Know what a vector valued differential equation is, and how to interpret it as a
system of differential equations.

• Understand how to derive that objects fall on parabolas under a constant down-
ward gravitational acceleration. Be able to solve simple differential equations like
this (where the individual functions do not depend on one another.)

• Be able to take an almost solution and adjust it to make it an actual solution by
changing its speed (like we did for circular orbits in Newtonian gravity)
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Because this topic was our most recent topic (and thus there is no webAssign questions
on it in our previous homeworks), I wanted to give a couple example questions below,
that could be reasonalbe to ask.

• If 𝑐 = (𝑥(𝑡), 𝑦(𝑡)), find a solution to 𝑐′ = ⟨2𝑡, 𝑒𝑡 − 1⟩
• Show that 𝑐(𝑡) = (cos(𝑡), sin(𝑡)) solves the differential equation 𝑐′(𝑡) ⋅ 𝑐′(𝑡) = 1.
• The curve (𝑥(𝑡), 𝑦(𝑡)) = (𝑡, 𝑡2) is almost a solution to the equation 𝑥𝑦 ′ = 𝑦 . Can
you adjust one of the component functions by a constant to make it a solution?
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Problems

Reading Contour Plots

You are hired as a consultant for an aerospace company that is working to design the
next generation of rocket boosters. The main goal of your team is to improve the ef-
ficiency of the engine (the total impulse delivered per kilogram of fuel). You begin by
focusing on the two most important variables: the rocket engine nozzle size 𝑛𝑠 , and the
temperature 𝑇 of the burning fuel. Youwrite a computer program to simulate thousands
of different combinations of temperature and size, and compute the efficiency 𝐸𝑓 𝑓 (𝑇 , 𝑛𝑠)
of each configuration. After a lot of computation, your program outputs the following
figure:

Figure 17.29.: A multivariate function of efficiency for rocket engine design.

How do you summarize your findings to your boss, given this data? An example sum-
mary might sound something like this (though this is not the answer for this exact plot,
of course!)
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For the most part, rocket engines perform better when the nozzle size is
large and the temperature is small, though if the temperature gets too low
it starts performing worse again. Performance is particularly bad for tem-
perature of 300 and small nozzle sizes (around 1). The most efficient con-
figuration is nozzle=5 and temp=3.2k.

If the current rocket engines in production have a nozzle size of 1 and a fuel temperature
of 6k, what concrete suggestion could you make to your team on how to change the
design slightly to improve efficiency? What would you say to a team currently building
a rocket with nozzle size 7 and temperature 3k?

Example questions you may want to consider: Should you increase both temp and
nozzle size? Decrease one of them and leave the other constant?Decrease both? Should they
make big or small changes to their current design? Etc….

Partial Derivatives

The data of multivariate functions can be presented to us in multiple ways. Sometimes,
we are given a contour plot - for example, as the output of a simulation like in the
problem above. But other times we are just given an equation, and have to work with
that.

In this problem we will continue our roll as an aerospace consultant engineer, working
on the same rocket design as above. After successfully helping with the engine design,
you are asked to work closer with the team that is building the rocket’s body so that
you can safely integrate the engine. This team is run by a collection of theorists who
have been able to work out a model for the rocket’s aerodynamic efficiency in terms of
the angle 𝛼 and height ℎ of its fins, the radius 𝑟 of the main tube, and the thickness 𝑡 of
the metal support beams. Their model is

𝐸 = 𝑟𝑒−𝑟/2 sin(ℎ𝛼/𝑡)

Because of your success in optimizing the engine design, this team asks you for your
help in optimizing the rocket body. In particular, they are currently considering building
a rocket body with radius 1.5, beam thickness of 0.3, fin angle of 𝜋/4 and fin height of
1.
They want to know should they increase or decrease the beam thickness, to im-
prove efficiency? Because the rocket body design depends on so many parameters,
we cant draw its graph (which lives in 5 dimensional space) or its contour plot (which
lives in four dimensions!). So, we need to just do some calculus.
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Graphs of Multivariate Functions

You are working with a real-estate developer to plan new environmentally-friendly in-
frastructure for a community in the rolling hills of Marin county. One particular hill
you are developing is well approximated by the graph of the quadratic function

𝑧 = 5 − 𝑥2
4 − 𝑦2

8
For (𝑥, 𝑦) ∈ [−2, 2] × [−2, 2].
Your job is to find the optimal placement along the hill for the collection of solar pan-
els that will provide electricity for the development. Solar panels work best when the
sun light shines directly perpendicularly onto their surface, so you are looking for the
location on the hill where the sun hits it most perpendicularly.

Consulting a local meteorologist you learn the direction of the average noontime sun
at your build site is ⟨1, 0, −4⟩. At which point (𝑥, 𝑦 , 𝑧) should we build the solar panel
farm? To figure this out, follow the outline below.

Figure 17.30.: Finding the optimal location on a hill to place solar panels requires under-
standing the sun’s direction.

• At any point (𝑥, 𝑦) on the plane, can you use partial derivatives to find a vector
which is perpendicular to the hill at that point?

• Our real goal is to find when the hill is perpendicular to the direction of the sun.
For which (𝑥, 𝑦) is the vector you found parallel to this?
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Solutions

Reading Contour Plots

This plot shows that rocket engine efficiency is maximized around a nozzle size of 2,
and a temperature of 5k. Small changes from this configuration in any way decrease
the efficiency somewhat. The worst performing rocket engines are those with large
nozzle size, and temperature around mid-range (3k degrees).

If the team is currently building a rocket with nozzle size 1 and temperature 6k, they
should slightly decrease the temperature while increasing nozzle size, in order to best
increase efficiency.

Partial Derivatives

A function is increasing if its derivative is positive, and decreasing when the derivative
is negative. Here we want to know if the efficiency is increasing or decreasing as we
change the beam thickness, so we need to take the partial derivative in the direction of
the variable 𝑡 .
Computing this,

𝜕𝑡𝐸 = 𝜕𝑡 (𝑟𝑒𝑟/2 sin (ℎ𝛼𝑡 )) = 𝑟𝑒−𝑟/2 cos (ℎ𝛼𝑡 ) (−ℎ𝛼𝑡2 )

Next, because we are only interested in what is happening near the actual rocket con-
figuration being built, we must plug in the current rocket parameters of 𝑟 = 1.5, 𝑡 = 0.3
and 𝛼 = 𝜋/4 to get

𝜕𝑡𝐸 = 1.5𝑒−0.75 cos ((1)(𝜋/4)0.3 ) (−(1)(𝜋/4)0.32 )
= 0.70854 ⋅ (−0.8660) ⋅ (−8.7266)
= 5.354603

This is positive, so we should increase thickness if we want to improve the efficiency of
our current rocket design.In fact this tells us even

more quantitative
information. Since this

value 5.35… is the slope
this says if we increase

thickness by a small
amount like 0.1 then the

efficiency increases by
5.35 ⋅ 0.1 = 0.535.
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Graphs of Multivariate Functions

In this problem we know the direction of the sun’s rays, and we want to know when
the normal vector to the hill is parallel to this: that is when is the hills normal vector a
scalar multiple of ⟨1, 0, −4⟩?
The first step is to find the normal vector to the hill 𝑧 = 5 − 𝑥2

4 − 𝑦2
8 at the point (𝑥, 𝑦).

In class, we found the normal vector to the graph of a multivariate function to be the
coefficient vector from its tangent plane:

𝑛 = ⟨𝑓𝑥 , 𝑓𝑦 , −1⟩

This version is downward pointing as the 𝑧 component is −1, so looking at our picture,
this normal vector is pointed into the hill.

Alternatively - if we did
not remember this we could
derive it using our
multivariate tools of
partial differentiation and
the cross product! Here we
could find two vectors that
are tangent to the hill
using partial derivatives: if
you move infinitesimally
one unit in the 𝑥 direction
your 𝑧 = 𝑓 (𝑥, 𝑦)
component will move by
𝜕𝑥𝑓 , and so the vector

𝑣𝑥 = (
1
0
𝑓𝑥
)

is tangent in the
𝑥-direction. Similarly,
𝑣𝑦 = ⟨0, 1𝑓𝑦 ⟩ is tangent in
the 𝑦 direction, and their
cross product is normal:

𝑛 = 𝑣𝑥×𝑣𝑦 = |
̂𝚤 ̂𝚥 �̂�
1 0 𝑓𝑥
0 1 𝑓𝑦

| = (
−𝑓𝑥
−𝑓𝑦
1
)

This normal is upward
pointing at 𝑧 is positive:
looking at our picture its
pointed out of the hill.

To find the actual vector for this problem, we need to calculate these derivatives:

𝑓𝑥 = −𝑥
2 𝑓𝑦 = −𝑦

4
𝑛 = ⟨−𝑥2 , −𝑦4 , −1⟩

To figure out when this is a multiple of ⟨1, 0, −4⟩ we are just asking when there is a
single constant 𝑐 such that

𝑘 (
−𝑥/2
−𝑦/4
−1

) = (
1
0
−4

)

This is a system of three equations that we need to solve. The bottom equation tells us
that 𝑘 = 4. Substituting this into the second equation, we see −𝑘𝑦/4 = 0 implies 𝑦 = 0,
and into the first equation yields

−𝑘𝑥/2 = −4𝑥/2 = 2𝑥 = 1 ⟹ 𝑥 = −1/2

Thus the point where the normal vector is parallel to the sunrays - where we should
place our solar panel on the hill has (𝑥, 𝑦) coordinates (−1/2, 0).
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Reflection & Correction

The goal of a college course is always learning - with homework, exams, and other
assignments all just vehicles (and motivation) to help learning occur. Thus, my main
goal from this exam is to help you all learnwhere you currently stand in the course, and
to set yourself up for success going forward.

• The first part of this process was the studying for the exam: where you reviewed
all the material on vectors and curves. Here you could earn extra points towards
your grade (if you want to use the hold-me-accountable-grading) by writing a
study guide for yourself.

• The second part of the process was taking the exam itself.
Here the goal is for both you and me to learn what you know so far in the course,
and gauge what needs to be done going forward.

Now, we are at the post-exam-period where we try to use the test to learn from our
pasts. To really get set up on the right path requires some work, so there will be a two
opportunities to earn points here as motivation.

• First - you can do an extra credit exam correction. You will be able to regain
the full amount of points missed on one problem of your choice. That is - if you got
a 2/10 on one problem you can earn back 8 points if you do a correction on that
problem.

• The second, is to write an exam reflection as part of the hold-me-accountable
grading system. Remember this grading system gives weight to other assign-
ments like this, and in the process lowers the amount that exams count towards
your final grade.

Extra Credit: Exam Correction

For 100% of the missed points back any problem of your choice: Write a study
guide for the problem, addressed to your past self, (or your future self, when you review
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for the final). MAKE SURE TO INCLUDE BOTH THE PROBLEM STATEMENT,
AND THE ORIGINAL SCORE YOU RECIEVED

You are not simply fixing themistakes in your old solution, but writing a rather involved
document teaching the mathematics necessary to succeed at questions like this. Your
submission should be neatly hand written or typed and in full paragraphs with complete
sentences. It should not be a rough draft, or an outline (bullet-point list of thoughts, etc).
Complete submissions will likely be several pages in length. Below is an outline
to help you structure such a lesson.

Analysis of your original solution What is the complete statement of the problem
you are writing a study guide for? When you were working on the exam, what did you
think about or try? If you were stuck at the beginning, or did not write much, what
made it difficult to make progress?

Teach the necessary techniques Before you begin writing up your correction, learn
how to solve the problem in its entirety. Look at your solution, and identify the main
tools you needed: do you need partial derivatives? Parametric curves? Dot and cross
products of vectors? Were some of your struggles caused by material prior to our
course? (Differentiation rules, or algebraic manipulation rules?). Were your difficulties
conceptual (had trouble picturing the difference between a vector and scalar function,
unsure how to tell if something is a circle or cylinder) or computational (forgot the
formula for cross product, etc)?

For eachmathematical technique that is integral to the solution of this problem
write a subsection reviewing this technique. Your section should include

• The technique itself (the formula / identity, or set of rules used)
• A discussion of what this technique is for : when should your reader (future you)
think to use it in a problem?

• An example (or two, or three) of using this technique correctly, in simple prob-
lems.

• A discussion of potential pitfalls: what are situations where using this mistake
can easily lead to a mistake? (For a calc 2 example; forgetting to convert 𝑑𝑥 in 𝑢-
sub, or some of the more involved conversions back to 𝑥 from 𝜃 for trigonometric
substitution)

A Full Solution of the Problem Now that you have taught your reader all of the
mathematics necessary to do this problem, write up a complete, annotated solution. Start
by repeating the problem statement, and then talk your reader through (in sentences)
what you should be thinking about at each step. I know that I have posted the exam
solutions! So I am not asking you to just write symbol for symbol what I wrote. I am
asking you to really explain what is going on in the solution. Write this as though you
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are truly trying to help your future self feel confident about this problem when they are
reviewing this material down the road.

A similar problem Now that you have become an ‘expert’ at this one problem, make
up a new example question that is similar (as in, it uses the same techniques to
solve). To make sure it is indeed similar - you should solve it after proposing it! But
you do not need to include the solution in your writeup. Instead, this problem will be
waiting for you to try again next time you study.

Hold-Me-Accountable: Exam Reflection

Reflect on the the first part of the semester, focusing on your studying techniques, your
exam performance, and suggestions to your future self. Your submission should be
neatly hand written or typed and in full paragraphs with complete sentences. It should
not be a rough draft, or an outline (bullet-point list of thoughts, etc). There are nowrong
answers, but only submissions showing real work at introspection will recieve credit:
remember, this is an (optional) opportunity for you to think about what works best for
you

How did the exam go? While it is still fresh on your mind, think about the exam itself.
How did you do compared to how you expected to do (after studying, but before the
exam itself)? After getting feedback, how did the exam go relative to how you felt after
taking it? Did you do better or worse than you felt you had (after leaving the exam, but
before getting feedback).
If you did well - what were the big contributions to that success for you? If you hoped
to have done better, what were some factors that may have affected your performance
(these include comfort level with the material, but also things like not sleeping enough
the day before, or time pressure etc).

What were your study strategies? How did you go about preparing for this exam?
Did you redo homework problems? Re-read lecture notes? Go back through the chap-
ters in the book? Did you study for the exam with friends, or alone? How did you
use the practice exam? Of the things you did do, what felt like it had the most payoff?
Did any of your studying feel unproductive for you (as in, you put a lot of time into a
particular concept or strategy, but in the end still struggled with that)?

How did you learn outside of class? Do you do practice problems beyond the home-
work? And if so, how do you decide what topics you need more problems for?
If not, how can you begin to use the homework to your advantage, as a means of help-
ing you identify what the most difficult points in a given week are? When reviewing a
new concept, do you spend time reading the book chapters that accompany lecture, or

191



Reflection & Correction

watching internet videos on these topics (or both, or neither)? Does the amount of time
you spend on this class match its relative difficulty? (ie are you spending alot of time
because its one of your hardest classes, or little time because its easy? This would mean
it does match. If you are spending not much time but its one of your harder classes, this
would not match.) This is a four credit course - the university expects students to spend
eight hours outside of classtime studying for the course.
Reflect on what you can do each week going forward to ensure that you are using the
homework to your advantage: are you not finishing problems and so wish you could
find a bigger study group to work with? Are you relying too much on friends and com-
ing away from problems with an incomplete understanding (even though you get them
correct)?

What are some recommendations for your future self? If you could help your
past self set up a strategy to leverage your own strengths (and efficiently identify your
points of struggle) for the first third of this class, what would you do? What parts of
your current strategy will you keep, and what would you have changed? Be realistic
(ie don’t just say “I would study X hours more” if adding X hours to your current plan
leaves you with an unsustainable work balance across your classes), and take what you
have learned about yourself in the above questions to build a reasonable plan.
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Assignment 6

Problems

Heatshields on Rockets

You are working with several research teams at NASAwho are trying to understand and
model the heat flow along the nose cone of a rocket during re-entry. Below is a picture
from a real simulation of this just for context (though you do not need this picture to
solve the problem)

Figure 17.31.: Waves of hot and cold on a nose-cone for a rocket traveling at hypersonic
speeds.

You and your team use the heat equation as a model of this: if 𝑥 is the distance along
the nose cone (starting with 𝑥 = 0 at the tip) and 𝑡 is the time, then the temperature
𝐻(𝑥, 𝑡) of the metal at point 𝑥 and time 𝑡 satisfies the equation

𝜕𝐻
𝜕𝑡 = 𝜆2 𝜕

2𝐻
𝜕𝑥2
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Where 𝜆 is a positive constant that depends on the metal you choose to make the nose
of the rocket out of (larger values of 𝜆 means that it conducts heat faster, smaller values
mean it conducts heat slower).

Your team of atmospheric scientists tell you that during re-entrywaves of plasmawill be
crashing over the nose cone, heating it up in a complicated pattern. Once this portion
of the flight is over, the temperature distribution along the nose cone is expected to look
like

Figure 17.32.: Temperature distribution (as a function of 𝑥 along the nose cone) at time
𝑡 = 0.

• Explain the heat equation in words: how does it relate the change in heat over
time to the distribution of heat in the 𝑥 direction? Using the heat equation, draw
a picture of what the heat distribution on the nosecone will after a short time.
Explain your graph: why did you draw it like this?

Your team of theorists find an exact solution to the heat equation describing these
plasma waves: it looks like this

𝐻(𝑥, 𝑡) = 𝑒−𝜆2𝑡 sin(𝜆𝑥)

(You don’t have to turn this in, but it’s a good idea to verify this is a solution to the heat
equation, by taking the derivatives on both sides and seeing the results are equal!)

Your team of mechanical engineers says that the materials they have built the nose
cone out of have 𝜆 = 4, but their measurement is only accurate to within ±0.1. The
rocket team plans to measure the temperature at the location 𝑥 = 𝜋/2 as a function of
time. However, because the rocket is vibrating during re-entry, they can only measure
position to within ±0.05.

194



Problems

• Use error analysis to figure out how far off the actual temperature reading might
be from the predicted theoretical value by 𝐻(𝑥, 𝑡) at 𝑡 = 0.

𝑑𝐻 = 𝐻𝑥𝑑𝑥 + 𝐻𝜆𝑑𝜆

Level Sets & The Gradient

Below are depictions of three functions 𝑓 , 𝑔, ℎ∶ ℝ2 → ℝ. In the first, I have given you a
picture of the level curves of 𝑓 (𝑥, 𝑦). In the second, I have drawn the gradient of 𝑔. In
the third, I have drawn a graph of ℎ. Your job is to practice translating between these
three modalities of understanding a multivariate function.

• Draw a sketch of the gradient of 𝑓 , and explain in a sentence or two your diagram:
why did you draw the arrows you did?

• Draw a sketch of the level sets of 𝑔, and explain in a sentence or two your diagram:
why did you draw the curves you did?

• For ℎ, you can choose: either draw me a diagram of the level sets of ℎ, or the
gradient of ℎ. Explain in a sentence why your sketch looks like it does.

Directional Differentiation

A small bug is flying through the air in a room, where the temperature distribution (in
degrees Celsius) is given by a scalar function 𝑇 ∶ ℝ3 → ℝ

𝑇(𝑥, 𝑦 , 𝑧) = 𝑥𝑦 + 𝑦𝑧 + 𝑥𝑦𝑧 − (𝑥2 + 𝑦2)

The bug’s motion is modeled by a parametric curve 𝑐 ∶ ℝ → ℝ3:

𝑐(𝑡) = (1 + 𝑡, 𝑡2
2 − 1, 1

3 + 𝑡 + 𝑡3
3 )
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• What is the temperature where the fly is at 𝑡 = 2?

• How quickly is the temperature changing in the direction of the fly’s motion at
𝑡 = 2?

The fly is seeking out a plate of warm food in the room to land on, and evolution has
endowed the fly with a simple strategy that works: at a given point 𝑝 in space, the fly
should attempt to turn and fly towards the nearest warm object (that is, in the direction
in which temperature in increasing the quickest).

• From its position at 𝑡 = 2, what (unit vector) direction should the fly head to
approach the food most efficiently?

• What is the angle between the current fly’s flightpath and this new optimal direc-
tion?

Solutions

Heatshields

The heat equation describes how a function measuring the heat of an object varies in
both 𝑥 and 𝑡 . It sets the first time derivative of 𝐻 equal to (a positive multiple of) the
second space derivative of 𝐻 . First derivatives measure the rate of change, and second
derivatives measure concavity, so this equation says

The rate of change of 𝐻 in time is proportional to the concavity of 𝐻 in the
𝑥 direction.

We can use this to understand qualitatively what happens over time: where a functions
concavity is positive, the equation says 𝜕𝑡𝐻 is positive, so 𝐻 is increasing. Similarly, if
the concavity is negative, then𝐻 must be decreasing. Looking at the plot, this means the
peaks (maxima, so negative concavity) are decreasing and the minima are increasing, so
the temperature is evening out over time.

For the error analysis, we need to compute 𝐻𝑥 and 𝐻𝜆:

𝐻𝑥 = 𝜕
𝜕𝑥 𝑒

−𝜆2𝑡 sin(𝜆𝑥) = 𝑒−𝜆2𝑡𝜆 cos(𝜆𝑥)

Now we need to evaluate this at the point we are interested in: 𝜆 = 4, 𝑥 = 𝜋/2, and
𝑡 = 0.:
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Figure 17.33.: The heat equation causes 𝐻 to even out over time.

𝐻𝑥 = 𝑒42⋅0 ⋅ 4 ⋅ cos(4𝜋2 ) = 1 ⋅ 4 ⋅ 1 = 4

Similarly we need to find 𝐻𝜆 and evaluate at the values of interest. Since 𝜆 shows up
twice in our formula, we are going to need to use the product rule:

𝐻𝜆 = 𝜕
𝜕𝜆 𝑒

−𝜆2𝑡 sin(𝜆𝑥) = −2𝜆𝑒−𝜆2𝑡 sin(𝜆𝑥) + 𝑒−𝜆2𝑡𝑥 cos(𝜆𝑥)

𝐻𝜆 = −2 ⋅ 4 ⋅ 𝑒−4⋅02 sin (0 ⋅ 𝜋2 ) + 𝑒−4⋅02 ⋅ 𝜋2 ⋅ cos (4𝜋2 )
= −2 ⋅ 4 ⋅ 1 ⋅ 0 + 1 ⋅ 𝜋2 ⋅ 1
= 𝜋

2

Thus we now know how to estimate the potential error 𝑑𝐻 in a heat measurement
caused by our uncertainty in the material parameter 𝜆 and the sensor position 𝑥 :
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𝑑𝐻 = 𝐻𝑥𝑑𝑥 + 𝐻𝜆𝑑𝜆
= 4𝑑𝑥 + 𝑝𝑖

2 𝑑𝜆
= 4(0.05) + 𝜋

2 (0.1)
= 0.35707…

Thus, if our measurement is more than 0.36 or so away from the theoretical prediction,
we know there’s an error in our experiment or theory somewhere!

Level Sets & The Gradient

In this problem the key is to remember the following facts about the gradient:

• The gradient points in the direction of steepest increase of the function
• The gradient is orthogonal to level sets of the function

And the following facts about level sets of a function:

• Near a max or a min, level sets look like concentric circles
• Near a saddle, level sets make an “X” shape.

In the first part of the problem, we are given the level sets and asked to draw the gradient.
We automatically know the gradient vectors will be perpendicular to the level sets, and
since the level sets come with a legend telling us which ones are high valued and which
ones are low, we can see the direction. I started by drawing a couple gradient vectors
directly on the level set sketch, and used these as a guide to fill in the rest:

Figure 17.34.: Drawing the gradient from level sets
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Next we started with a plot of the gradient and needed to draw level sets. First we
notice there is one spot where the gradient is pointed inwards, and one spot where
its pointed outwards in every direction. Since the gradient always points towards the
steepest increase, these are a max and min respectively. And, we know maxes and mins
are surrounded by concentric circle level sets. Second, we can see the gradients all
point in approximately the same direction across the middle of the image, so the level
set there is approximately linear. From this, we can fill in the rest by making sure they
never cross (making a saddle) or close up to form any other families of circles (making
a new max or min):

Figure 17.35.: Drawing level sets given the gradient.

Finally we are given a picture of a graph in 3D and told to draw its gradient or its
level sets. I’ll draw the level sets: if you want to draw the gradient you can follow the
procedure we did above to convert my picture. The first thing we notice is the function
graphed has twomaxes and a saddle. So, let’s label those and then drawwhat the nearby
level sets look like:

Figure 17.36.: The local level sets near critical points provide a very helpful guide.

We also see by looking farther down the function that the level sets must eventually
become circles, so we add one of these too. Then we can just fill everything in, by
making sure the level sets never cross or close off to form more families of circles:
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Figure 17.37.: The finished level set plot.

Directional Differentiation

At 𝑡 = 2 we can find the fly’s location by just plugging in 2 to the parametric curve:

𝑐(2) = (1 + 2, 2
2
2 − 1, 13 + 2 + 23

3 ) = (3, 1, 5)

To find the temperature here, we then plug this into 𝑇 (𝑥, 𝑦 , 𝑧):

𝑇 (𝑐(2)) = 𝑇 (3, 1, 5) = (3)(1) + (1)(5) + (3)(1)(5) − (12 + 32) = 13

To find how quickly the temperature is changing in the direction of the fly’s motion, we
first need to find this direction. That means finding the unit vector in the direction of
𝑐′(2).

𝑐′(𝑡) = ⟨1, 𝑡 , 1 + 𝑡2⟩
𝑐′(2) = ⟨1, 2, 5⟩

‖𝑐′(2)‖ = ‖⟨1, 2, 5⟩‖ = √12 + 22 + 52 = √30

Thus the unit vector in the direction of the fly’s motion is

𝑣 = ⟨ 1
√30

, 2
√30

, 5
√30

⟩
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To find the rate temperature is changing in this direction, we need to find the directional
derivative. This is computed using the gradient vector

𝐷𝑣𝑇 = ∇𝑇 ⋅ 𝑣

So we next need to find the gradient at the fly’s position:

∇𝑇 = ⟨𝑦 + 𝑦𝑧 − 2𝑥, 𝑥 + 𝑧 + 𝑥𝑧 − 2𝑦, 𝑦 + 𝑥𝑦⟩

And evaluating at the fly’s position (3, 1, 5) gives

∇𝑇(3, 1, 5) = ⟨1 + 5 − 6, 3 + 5 + 15 − 2, 1 + 3⟩ = ⟨0, 21, 4⟩

Dotting this with the direction vector gives the directional derivative we seek:

⟨0, 21, 4⟩ ⋅ ⟨ 1
√30

, 2
√30

, 5
√30

⟩ = 42
√30

+ 20
√30

= 62
√30

≈ 11.32

Thus,the rate of change of temperature is 11.32 degrees per second

Next, the direction 𝑑 where temperature is increasing fastest is the direction of the
gradient, so we just need to divide ∇𝑇 by its magnitude:

‖∇𝑇 ‖ = ‖⟨0, 21, 4⟩‖ = √457

𝑑 = ⟨0, 21
√457

, 4
√457

⟩

And finally, to find the angle the fly should turn to head in this direction, we can use
the dot product! We already have the unit vector 𝑣 in the fly’s direction, and the unit
vector 𝑑 in the direction of fastest increase in temperature. So

cos 𝜃 = 𝑣 ⋅ 𝑑 = 42
√30√457

+ 20
√30√475

= 62
√13710

≈ 0.529

Taking the inverse cosine, we find that 𝜃 = 1.0127 radians, or approximately 58
degrees.
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Problems

Function Sketching

Consider the function 𝑓 ∶ ℝ2 → ℝ given by the following formula:

𝑓 (𝑥, 𝑦) = 𝑥3 + 𝑦3 − 3𝑥𝑦 + 14

In this problem, we work to understand 𝑓 without any technology: to showcase the
power that calculus has brought us.

• Find the critical points of 𝑓 , and classify these as max, mins or saddles via the
second derivative test.

• Use this classification to sketch the level curves of 𝑓 like we did in class. Start
by drawing the level curves near each max, min and saddle. Then use that level
curves cannot cross (away from a saddle) and there are no other max/mins to fill
in the rest of the picture.

• Use this sketch of the level curves of 𝑓 and the information about which points
are maxima and minima to sketch the gradient of 𝑓 .

Optimization

You are once again working on the engineering team developing new rocket engines for
the Artemis mission, where on a previous homework you submitted recommendations
to your team members on how to modify the nozzle width and fuel temperature to
increase efficiency. Now, you are tasked with taking this efficient design and trying to
maximize the thrust during the initial burn to leave earth’s atmosphere, which is where
most fuel gets used up.

Having already set the nozzle diameter and fuel temperature, you look to study the
effect of two other variables: the overall radius of the rocket and the slope of the nose-
cone (both of which greatly affect air resistance) on the net thrust. Your colleagues run a
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computational simulation of the atmospheric physics, and determine that the net force
varies as a function of the radius 𝑟 and slope 𝑠 as

𝐹(𝑟 , 𝑠) = 8 + 4𝑟𝑠 − 4𝑟4 − 4𝑠4

Find the critical points of 𝐹 : these are the configurations that you and your engineering
team should investigate more closely.

After figuring this out, what radius and slope should you recommend to the manufac-
turing team? (Remember radius should be a positive number, as its a length).

Constrained Optimization

On the last problem, you helped an engineering team for the NASA Artemis moon
mission optimize the width and slope of their rocket’s nose cone for aerodynamic effi-
ciency.

However, after a brief celebration you receive news back from the manufacturing team:
your solution simply will not work! While it certainly is the most efficient with regard
to air friction, the nose cone is but one piece of a very large and complicated rocket, and
there’s other constraints that need to be taken into account.

Indeed, there is a fixed cap on the total weight of the rocket overall, and a fixed per-
centage of that can be used on materials in the manufacture of the nose cone. You are
allotted exactly 800kg of material from which to design the nose cone, and asked to
produce a design weighing exactly this much (so that other teams know ahead of time
the nose cone’s final weight, and can plan accordingly).

The original nosecone design violates this, and indeed the team at NASA suggests that
you throw out the entiremodel entirely and re-design the nosecone using lighter-weight
specifications. Your new model has a different dependency of thrust on radius and
efficiency:

𝐹(𝑟 , 𝑠) = 4 − 𝑟2 − 𝑠2 + 3𝑟𝑠

With this new model, you go back to your modeling software and ask the computer to
estimate the weight of a nose cone with radius 𝑟 and slope 𝑠: it tells you that the weight
can be modeled by

𝑊(𝑟, 𝑠) = 100(𝑠2 + 𝑟2)

204



Solutions

(where we require that 𝑟 > 0 and 𝑠 ≥ 0 as they are a distance and a slope)

Given this thrust equation and weight constraint, what should you bring back to the
manufacturing team as the best (𝑟 , 𝑠) parameters for aerodynamic flight?

Solutions

Function Sketching

To sketch the level sets and gradient of this function, we first must find the critical points
and classify them. Taking the graident,

∇𝑓 = ⟨3𝑥2 − 3𝑦, 3𝑦2 − 3𝑥⟩

So the system of equations we need to solve is (after dividing by the 3):

{𝑥2 = 𝑦, 𝑦2 = 𝑥}

Substituting the first equation into the second we see

𝑦2 = (𝑥2)2 = 𝑥4 = 𝑥

Thus either 𝑥 = 0 (and hence 𝑦 = 0) or 𝑥3 = 1. But this only has the solution 𝑥 = 1 (and
hence 𝑦 = 1), so there are two critical points

{(0, 0), (1, 1)}

To classify them, we need to apply the second derivative test:

𝑓𝑥𝑥 = 6𝑥 𝑓𝑥𝑦 = −3 𝑓𝑦𝑦 = 6𝑦

Thus the Hessian matrix and its determinant are

𝐻 = (6𝑥 −3
−3 6𝑦 ) 𝐷 = det𝐻 = 36𝑥𝑦 − 9
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Evaluating this at the critical points gives𝐷(0, 0) = −9, so (0, 0) is a saddle, and𝐷(1, 1) =
36 − 9 = 25, so (1, 1) is either a max or min. To figure out we look at the sign of 𝑓𝑥𝑥 or
𝑓𝑦𝑦 . Both of these are positive, so its a minimum.

To sketch the level sets, we can start with the local model of a minimum (concentric
rings) at (1, 1) and of a saddle (an X shape) at (0, 0), then fill in the rest of the plot
making sure no other level sets cross or close up into circles.

Figure 17.38.: Drawing level sets from information about critical points.

Given this picture, we can draw the gradient by remembering its orthogonal to level
sets, and points in the direction of maximum increase. Since we know that saddles go
upwards along one axis and downwards along the other, knowing where the minimum
is sorts out the directions of everything else:

Figure 17.39.: Drawing the gradient from the level sets.
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Optimization

To optimize the behavior of this rocket, we are searching for maxima in (𝑟 , 𝑠). That
means we again must begin by finding critical points and classifying them. Starting
with the gradient

∇𝐹 = ⟨4𝑠 − 16𝑟3, 4𝑟 − 16𝑠3⟩

As the critical points are where the gradient vanishes, this leads to the system of equa-
tions

{𝑠 = 4𝑟3, 𝑟 = 4𝑠3}

Similar to the previous problem, we can subsitute one of these into the other to get an
equation in a single variable:

𝑠 = 4𝑟3 = 4(4𝑠3)3 = 44𝑠9

Thus, either 𝑠 = 0 (and hence 𝑟 = 0 too) or we can divide by 𝑠 and see that

1 = 44𝑠8 ⟹ 1
44 = 𝑠8

Taking the fourth root of both sides gives

𝑠2 = 1
4 ⟹ 𝑠 = ±1

2
Plugging these into the equation 𝑟 = 4𝑠3 to get 𝑟 in each case, we find three critical
points:

{(0, 0), (12 ,
1
2) , (

−1
2 , −12 )}

Now to classify these we must apply the second derivative test:

𝐻 = (𝑓𝑥𝑥 𝑓𝑥𝑦
𝑓𝑥𝑦 𝑓𝑦𝑦) = (−48𝑟

2 4
4 −48𝑠2)

𝐷 = det𝐻 = (−48𝑟2)(−48𝑠2) − (4)(4) = 482𝑟2𝑠2 − 42
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Plugging in the critical points, we find that

𝐷(0, 0) = −16 𝐷(12 ,
1
2 ) = 144 𝐷(−12 , −12 ) = 144

Thus (0, 0) is a saddle, and we need to look closer at the sign of 𝑓𝑟 𝑟 to determine the
other two extrema. In each case 𝑓𝑟 𝑟 = −12 > 0 so they are each maxima.

BUT: remember that 𝑟 is a radius in the problem, and must be a positive number, so we
can actually ignore this critical point - it doesn’t correspond to a buildable rocket. This
means we should suggest the parameters

(𝑟 , 𝑠) = (12 ,
1
2)

to NASA, where the maximal value is

𝐹(1/2, 1/2) = 31
4

Constrained Optimization

To solve the constrained optimization problem, we need to employ the method of La-
grange multipliers. We need to find the gradient of the efficiency function as well as of
the constraint.

∇𝐹 = ⟨−2𝑟 + 3𝑠, −2𝑠 + 3𝑟⟩

The constraint on weight is 100(𝑠2 + 𝑟2) = 800, so we can simplify the numbers a bit
by first dividing by 100 to get 𝑠2 + 𝑟2 = 8. Now, ∇𝑊 = ⟨2𝑟 , 2𝑠⟩ and so the system of
equations to be solved is

∇𝐹 = 𝜆∇𝑊

(3𝑠 − 2𝑟
3𝑟 − 2𝑠) = (2𝜆𝑟2𝜆𝑠)

One solution to this system is 𝑟 = 0 and 𝑠 = 0 as then both equations just become 0 = 0
which is true. When they are nonzero, we can solve each equation for 2𝜆 by dividing
by a variable and set them equal:
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3𝑠 − 2𝑟
𝑟 = 2𝜆 = 3𝑟 − 2𝑠

𝑠
This eliminates 𝜆 which is good - we don’t care about its value anyway - and gives us
an equation just in terms of 𝑟 and 𝑠. Multiplying through by the denominators we can
simplify a bit

(3𝑠 − 𝑟)𝑠 = (3𝑟 − 𝑠)𝑟
3𝑠2 − 𝑟𝑠 = 3𝑟2 − 𝑟𝑠

3𝑟2 = 3𝑠2
𝑟2 = 𝑠2

Taking the square root of both sides we find 𝑟 = ±𝑠, which we can then use in the
constraint. In either of these cases,

𝑟2 + 𝑠2 = 𝑟2 + 𝑟2 = 2𝑟2 = 8 ⟹ 𝑟2 = 4 ⟹ 𝑟 = ±2

This gives us four more critical points: when 𝑟 = 2 we can have 𝑠 = ±2 so we get (2, 2)
and (2, −2), similarly when 𝑟 = −2, where we get (−2, −2) and (−2, 2).
Thus, the five critical points for this system are

{(0, 0), (2, 2), (2, −2), (−2, 2), (−2, −2)}

But - not all of these are physically relevant to the problem! Weneed both 𝑟 > 0 and 𝑠 ≥ 0
for the model to make sense, and only one of these satisfies both of these constraints:

(𝑟 , 𝑠) = (2, 2)

The new efficiency of this model is

𝐹(2, 2) = 4 − (2)2 − (2)2 + 3(2)(2) = 4 − 4 − 4 + 12 = 8
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Study Guide II

Write a study guide for yourself in preparation for Midterm I.
You can write the guide however helps you most, but here are some possible sug-
gestions:

• Write down the important definitions for each topic you want to review. Explain
them in your own words!

• Either come up with an example problem (or find one on WebAssign) for each
topic you want to review, and write out its solution by hand! You’ll be handwrit-
ing solutions on the exam, so this is a good way to get yourself in that mindset
and away from online work.

• For each topic you want to review, write to yourself how confident you are with it
(maybe on like a 1-10 scale, if that’s helpful to you): this way when you’re study-
ing you can look back and easily remember which things you were struggling
with.

• If there’s multiple ways to do something, make a note of that for yourself!

The second midterm will focus mostly on the chapter Multivariate Differentiation, and
the beginnings of Multivariate Integration (Only the first section, double integrals).
Here’s a short cliffnotes of what we have covered (essentially a table of contents of the
notes above.)

Differentiation

Functions

• Understanding graphs of multivariable functions.
• Understanding level sets of multivariable functions.
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Partial Derivatives

• Know the definition and conceptual meaning of partial derivatives.
• Be able to use partial derivatives to tell when a function is increasing / decreasing
/ concave up /concave down in a coordinate direction.

• Computing implicit partial derivatives, and using them to find slopes.
• Be able to compute higher order partial derivatives.
• Being able to express in words what a partial differential equation says. Under-
standing qualitative behavior of partial differential equations.

Linearization

• Find implicit and parametric tangent planes to graphs 𝑧 = 𝑓 (𝑥, 𝑦).
• Find normal vectors to graphs of functions 𝑧 = 𝑓 (𝑥, 𝑦).
• Use differentials to estimate the value of a function near a point where you can
compute it.

• Use differentials for error analysis: quantification of error in measurements.

The Gradient

• Know the definition of the gradient, how to compute it.
• Be able to use the gradient to compute directional derivatives.
• Know the geometry of the gradient: specifically, the meanings of its direction and
magnitude.

• Know the relationship between gradients of a function and its level sets.

Extrema

• Be able to find the critical points of a function
• Be able to classify the critical points of a function as maxes mins or saddles.
• Given information about maxes mins and saddles from such a computation, be
able to sketch the level sets of a function.

Optimization

• Understand how to deal with constraints via substitution.
• Know the concepts behind the technique of Lagrange multipliers
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Integration

• Be able to use the technique of Lagrange multipliers to find the maxima and min-
ima of a function along a constraint.

• Be able to combine Lagrange multipliers with the first and second derivative test
of the previous section to solve constrained optimization problems with inequal-
ities.

Integration

Double Integrals

• Be able to compute the double integral of a function over a rectangle.
• Be able to compute an iterated integral with variable bounds.
• Be able to change the order of integration on a double integral.
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Problems

The Mass of Steel Sheets

Integrals measure the area under a curve, but appear in a much wider context than
simply geometry: often this area is encoding the total amount of some physical property
distributed along an interval, rectangle or surface.

One common example is mass: if you have an object of a given fixed density 𝜌 and
volume 𝑉 , its possible to find the mass as just the density times volume. But if you have
an object whose density varies, then the totalmass is the integral of its density! Thismay
be familiar already in one dimension from Calc I/II or introductory physics/engineering,
where the mass of a 1-dimensional rod from 𝑥 = 𝑎 to 𝑥 = 𝑏 is given by

𝑚 = ∫
𝑏

𝑎
𝜌(𝑥)𝑑𝑥

Multivariate integrals bring these techniques much closer to real world application, as
real-world objects are often much more than lines! In this problem we will learn how
to calculate the mass of a corrugated steel sheet, the kind used in many manufacturing
and engineering designs due to its good ratio of strength to weight.

Figure 17.40.: A sheet made of corrugated steel commonly used in construction.

The density of a flat steel sheet is constant (at 2mm thick, its 15kg per square meter).
However, a corrugated sheet has a non-constant density across its surface, due to the
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fact that it bends in one direction (and there is more sheet, hence more steel, in the
bends). The density (in kilograms / square meter) of a corrugated sheet is well modeled
by the simple expression

𝜌(𝑥, 𝑦) = 15 + 0.5 sin2(5𝜋𝑥)

(The variable 𝑦 does not show up in the formula as the sheet is only corrugated in one
direction).

Figure 17.41.: A building made of corrugated steel plates.

You are on a construction team that is looking to plate the outside of a new building in
corrugated steel sheets. You are told that a single panel of such sheeting is a rectangle
running from 𝑥 = 0 to 𝑥 = 3 meters, and 𝑦 = 0 to 𝑦 = 5 meters.

• Set up a double integral that gives the mass of this sheet. How much does it
weigh?

• The building you are looking to cover in panels has an outside surface area of 800
square meters. How many panels do you need to order to complete the project?
If each truck bringing in panels has a maximum capacity of one ton (1,000kg) how
many truck loads will be required on construction day?

Building Roads

You are back working in the city planners office, this time consulting on a new road
construction project. The planned road is to follow a relatively straight path through
a hilly terrain, and to prepare for construction you have recommended bringing in a
team of steam shovels and bulldozers to cut a path into the hillside so the road can run
straight.

You consult a GPS company to get the elevation data for your county, and learn that the
area throughwhich the road passes has a height (in meters) ℎ(𝑥, 𝑦) above the bedrock:

ℎ(𝑥, 𝑦) = 0.01𝑥𝑦 + 0.001𝑥2
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Figure 17.42.: A road cut through a hillside is built by dynamiting the rock along a
straight path and removing it, leaving a level surface for pavement.

In these coordinates the road is to be approximately 6 meters wide, centered on the path
𝑦 = 3𝑥 − 1. That is, the lower edge of the road is described by 𝑦 = 3𝑥 − 4 and the upper
edge of the road is described by 𝑦 = 3𝑥 + 2. You are responsible for the construction of
this road between its start at 𝑥 = 0 and its first intersection 1 kilometer to the east, at
𝑥 = 1000.

Figure 17.43.: The path of the proposed road in the 𝑥𝑦 plane: it goes from 𝑥 = 0 to
𝑥 = 1000 and lies between the curves 𝑦 = 3𝑥 − 4 and 𝑦 = 3𝑥 + 2.

The main thing the city needs to know is how much earth needs to be removed during
construction. They own a fleet of dumptrucks, each of which can carry 100𝑚3 of dirt
at a time, but they would like an estimate of the total number of trips this will take, as
that will help plan an accurate timeline for the project.

• Set up a double integral that measures the total amount of land that needs to be
removed from the current site of the road.

• Evaluate this double integral. How many truckloads should the city plan for?

Calculating Air Pressure

Our atmosphere - the thin layer of air surrounding our planet making all life possible
- is held to the surface via gravity. There is no barrier holding the atmosphere in, but
instead it thins out rapidly from its density at the surface to a near perfect vaccuum up
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in space. Using some classical physics, one learns that in fact the atmospheric density
decreases exponentially, following the formula

𝜌(𝑥, 𝑦 , 𝑧) = 𝜌0𝑒−𝑧/𝐻

Where 𝜌0 is the density of air at sea level and 𝐻 is the characteristic height of the at-
mosphere: a number controlling how quickly the atmosphere thins out with altitude.
These numbers are different on each planet with an atmosphere: on Earth we find that
𝜌0 = 0.0752 pounds per cubic foot, and 𝐻 = 6.21 miles.

Usually, we can happily ignore air pressure in day-to-day life, as it presses on all sides of
us equally, and our bodies have evolved to support this pressure. However, air pressure
is very important to take into account in certain engineering situations: especially when
designing vaccuum chambers. A vaccuum chamber is an enclosure (ranging from a small
box, to an entire room) from which all of the air can be pumped out for experiments
requiring an air-free environment (such as testing rocket engine parts).

Figure 17.44.: The atmosphere drops off exponentially in density, and its mass is calcu-
lated as a triple integral of its density over the entire air column, from
𝑧 = 0 to 𝑧 = ∞ over an area 𝑅 in the 𝑥𝑦 plane.

As part of your job back at the rocket factory, you are tasked with helping the engineer-
ing team design a new vaccuum chamber. This chamber is to be a perfect cube, 10 feet
on each side.
Specifically we can model the top face of this vaccuum chamber as a square region 𝑅 in
the plane with 0 ≤ 𝑥 ≤ 10 and 0 ≤ 𝑦 ≤ 10.
Above this square 𝑅, there is a column of air extending all the way into space: we denote
this region as

𝐸 = {(𝑥, 𝑦 , 𝑧) ∣ (𝑥, 𝑦) ∈ 𝑅, 𝑧 ≥ 0}

To calculate the weight of the atmosphere pressing down on the vaccuum chamber, we
need to do a triple integral of the density of the atmosphere inside of this column of
air:
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𝑀 = ∭𝐸
𝜌(𝑥, 𝑦 , 𝑧)𝑑𝑉

How much weight is pressing down on the top of the vaccuum chamber from the air?
Hint: the range of 𝑧 in the region 𝐸 will go all the way into space, so you’ll end up with an
improper integral from Calc II. It’s easiest to calculate things leaving 𝜌0 and𝐻 as constants,
and only plugging in their numerical values at the end: remember to convert everything to
the same units (say, pounds and feet!)

Solutions

Mass of Metal Sheets

We are given the mass density 𝜌(𝑥, 𝑦) = 15 + 0.5 sin2(5𝜋𝑥) and the size of the sheet
𝑥 ∈ [0, 3], 𝑦 ∈ [0, 5]. So, finding its mass just amounts to calculating a double integral:

𝑀 = ∬𝑅
𝜌𝑑𝐴 = ∫

5

0 ∫
3

0
15 + 1

2 sin2(5𝜋𝑥) 𝑑𝑥 𝑑𝑦

We evaluate this as an iterated integral, so we can first focus just on the 𝑥 integral. This
has sin2 in it, so we use a trigonometric identity to simplify

sin2(5𝜋𝑥) = 1 − cos 10𝜋𝑥
2

∫
3

0
15 + 1

2
1 − cos(10𝑝𝑖𝑥)

2 𝑑𝑥

= ∫
3

0
15𝑑𝑥 + ∫

3

0
1
4(1 − cos(10𝜋𝑥))𝑑𝑥

= 45 + 1
4 (𝑥 − sin(10𝜋𝑥)

10𝜋 ) |
3

0

= 45 + 1
4 (3 −

0
10𝜋 )

= 45 + 3
4 = 45.75

Now, we integrate the result with respect to 𝑦 :
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𝑀 = ∫
5

0
45.75𝑑𝑦 = 45.75 ∗ 5 = 228.75kg

The building has a surface area of 800𝑚2 and each panel is 3 × 5 = 15𝑚2. Thus we need
800/15 = 53.33… panels, so in reality we need 54 panels to make sure we can cover it
all.

Each truck can carry 1000𝑘𝑔 total which is

1000
228.75 = 4.37 panels

Thus, every truck can carry 4 panels (as 5 would be too many for its weight). We need
54 panels total, so the number of truck loads required is

54
4 = 13

Building Roads

The amount of earth to be cleared away is the double integral of the height of the ground
ℎ(𝑥, 𝑦) over the region defined by the future road. The problem gives us ℎ, and describes
the region as

𝑅 = {0 ≤ 𝑥 ≤ 1000, 3𝑥 − 4 ≤ 𝑦 ≤ 3𝑥 + 2}

Thus, the integral which determines the volume of rock to be cleared is

𝑉 = ∬𝑅
ℎ 𝑑𝐴 = ∫

1000

0 ∫
3𝑥+2

3𝑥−4
0.01𝑥𝑦 + 0.001𝑥2 𝑑𝑦𝑑𝑥

We compute this as an iterated integral, focusing first only on the innermost integral:

∫
3𝑥+2

3𝑥−4
1
100𝑥𝑦 + 1

1000𝑥
2𝑑𝑦

= 1
200𝑥𝑦

2 + 1
2000𝑥

2𝑦|
3𝑥+2

3𝑥−4

= 1
200𝑥 ((3𝑥 + 2)2 − (3𝑥 − 4)2) + 1

2000𝑥
2 ((3𝑥 + 2) − (3𝑥 − 4))
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Solutions

This can be simplified with some algebra:

= 1
200𝑥(36𝑥 − 12) + 1

2000𝑥
2(6)

= 12
200(3𝑥

2 − 𝑥) + 6
2000𝑥

2

= 183
1000𝑥

2 − 3
50𝑥 = 0.189𝑥2 − 0.06𝑥

Next, we integrate with respect to 𝑥 :

∫
1000

0
0.189𝑥2 − 0.06𝑥 𝑑𝑥

= 0.183𝑥
3
3 − 0.06𝑥

2
2 |

1000

0
= 0.061(1000)3 − 0.03(1000)2

60, 970, 000𝑚3

Since each truckload can only carry 1000 cubic meters, the city should plan for 60, 970
truckloads! No wonder road construction takes so long.

Calculating Air Pressure

We are looking to calculate the air pressure of the atmosphere on the square region

𝑅 = {0 ≤ 𝑥 ≤ 10, 0 ≤ 𝑦 ≤ 10}

That means we need to calculate the mass of the entire atmosphere over this region.
Approximating the atmosphere as extending all the way up into space (to infinity) we
can write this region as

𝐸 = {(𝑥, 𝑦 , 𝑧) ∣ (𝑥, 𝑦) ∈ 𝑅, 0 ≤ 𝑧 ≤ ∞}

To find the mass we need to perform an integral over 𝐸 of the density of the atmosphere,
which we were given 𝜌(𝑥, 𝑦 , 𝑧) = 𝜌0𝑒−𝑧/𝐻 .

We can express the triple integral as an iterated integral given our bounds
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𝑀 = ∭𝐸
𝜌 𝑑𝑉 = ∫

10

0 ∫
10

0 ∫
∞

0
𝜌0𝑒−𝑧/𝐻 𝑑𝑧𝑑𝑦𝑑𝑥

This allows us to just focus on the 𝑧-integral first: remembering that 𝜌0 and 𝐻 are just
constants,

∫
∞

0
𝜌0𝑒−𝑧/𝐻 𝑑𝑧

= 𝜌0𝑒−𝑧/𝐻 1
−1/𝐻 |

∞

0

= −𝐻𝜌0𝑒−𝑧/𝐻 |
∞

0
= −𝐻𝜌0(0 − 1) = 𝐻𝜌0

Nowwe just need to integrate over 𝑥 and 𝑦 , which is easy since𝐻 and 𝜌0 are constant:

∫
10

0 ∫
10

0
𝐻𝜌0𝑑𝑦𝑑𝑥 = 𝐻𝜌0 ∫

10

0 ∫
10

0
𝑑𝑦𝑑𝑥 = 100𝐻𝜌0

We have the values of the constants: 𝜌0 = 0.0752 pounds per cubic foot, and 𝐻 = 6.21
miles, but to use themwe need tomake sure everything is in the same units. Our integral
𝑥, 𝑦 , 𝑧 were all in feet, and so is the constant 𝜌0, so thats’ good. But𝐻 was given in miles,
so we need to convert it to feet:

𝐻 = 6.21miles ⋅ 5280feet
mile

= 32788.8
Plugging these two constants in, we find that the weight of the atmosphere pushing
down on our vaccuum chamber is

100 ⋅ 32, 788 ⋅ 0.0752 = 246, 571

Thus we need to build things so that they can support 246, 561 pounds of atmospheric
pressure.
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Reflection & Correction II

The goal of a college course is always learning - with homework, exams, and other
assignments all just vehicles (and motivation) to help learning occur. Thus, my main
goal from this exam is to help you all learnwhere you currently stand in the course, and
to set yourself up for success going forward.

• The first part of this process was the studying for the exam: where you reviewed
all the material on vectors and curves. Here you could earn extra points towards
your grade (if you want to use the hold-me-accountable-grading) by writing a
study guide for yourself.

• The second part of the process was taking the exam itself.
Here the goal is for both you and me to learn what you know so far in the course,
and gauge what needs to be done going forward.

Now, we are at the post-exam-period where we try to use the test to learn from our
pasts. To really get set up on the right path requires some work, so there will be a two
opportunities to earn points here as motivation.

• First - you can do an extra credit exam correction. You will be able to regain
the half the amount of points missed on one problem of your choice. That is - if you
got a 1/5 on one problem you missed 4 points, and so you can earn back 2 points
by doing a correction. (Note this is half the extra credit compared to the first
exam: this fits into a pattern of full EC on exam 1, half the EC on exam 2, and no
EC on teh final, as the course is over).

• The second, is to write an exam reflection as part of the hold-me-accountable
grading system. Remember this grading system gives weight to other assign-
ments like this, and in the process lowers the amount that exams count towards
your final grade.

Extra Credit: Exam Correction

For HALF of the missed points back any problem of your choice: Write a study
guide for the problem, addressed to your past self, (or your future self, when you review
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for the final). MAKE SURE TO INCLUDE BOTH THE PROBLEM STATEMENT,
AND THE ORIGINAL SCORE YOU RECEIVED

You are not simply fixing themistakes in your old solution, but writing a rather involved
document teaching the mathematics necessary to succeed at questions like this. Your
submission should be neatly hand written or typed and in full paragraphs with complete
sentences. It should not be a rough draft, or an outline (bullet-point list of thoughts, etc).
Complete submissions will likely be several pages in length. Below is an outline
to help you structure such a lesson.

Analysis of your original solution What is the complete statement of the problem
you are writing a study guide for? When you were working on the exam, what did you
think about or try? If you were stuck at the beginning, or did not write much, what
made it difficult to make progress?

Teach the necessary techniques Before you begin writing up your correction, learn
how to solve the problem in its entirety. Look at your solution, and identify the main
tools you needed: do you need partial derivatives? Parametric curves? Dot and cross
products of vectors? Were some of your struggles caused by material prior to our
course? (Differentiation rules, or algebraic manipulation rules?). Were your difficulties
conceptual (had trouble picturing the difference between a vector and scalar function,
unsure how to tell if something is a circle or cylinder) or computational (forgot the
formula for cross product, etc)?

For eachmathematical technique that is integral to the solution of this problem
write a subsection reviewing this technique. Your section should include

• The technique itself (the formula / identity, or set of rules used)
• A discussion of what this technique is for : when should your reader (future you)
think to use it in a problem?

• An example (or two, or three) of using this technique correctly, in simple prob-
lems.

• A discussion of potential pitfalls: what are situations where using this mistake
can easily lead to a mistake? (For a calc 2 example; forgetting to convert 𝑑𝑥 in 𝑢-
sub, or some of the more involved conversions back to 𝑥 from 𝜃 for trigonometric
substitution)

A Full Solution of the Problem Now that you have taught your reader all of the
mathematics necessary to do this problem, write up a complete, annotated solution. Start
by repeating the problem statement, and then talk your reader through (in sentences)
what you should be thinking about at each step. I know that I have posted the exam
solutions! So I am not asking you to just write symbol for symbol what I wrote. I am
asking you to really explain what is going on in the solution. Write this as though you
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Hold-Me-Accountable: Exam Reflection

are truly trying to help your future self feel confident about this problem when they are
reviewing this material down the road.

A similar problem Now that you have become an ‘expert’ at this one problem, make
up a new example question that is similar (as in, it uses the same techniques to
solve). To make sure it is indeed similar - you should solve it after proposing it! But
you do not need to include the solution in your writeup. Instead, this problem will be
waiting for you to try again next time you study.

Hold-Me-Accountable: Exam Reflection

Reflect on the the first part of the semester, focusing on your studying techniques, your
exam performance, and suggestions to your future self. Your submission should be
neatly hand written or typed and in full paragraphs with complete sentences. It should
not be a rough draft, or an outline (bullet-point list of thoughts, etc). There are nowrong
answers, but only submissions showing real work at introspection will receive credit:
remember, this is an (optional) opportunity for you to think about what works best for
you

How did the exam go? While it is still fresh on your mind, think about the exam itself.
How did you do compared to how you expected to do (after studying, but before the
exam itself)? After getting feedback, how did the exam go relative to how you felt after
taking it? Did you do better or worse than you felt you had (after leaving the exam, but
before getting feedback).
If you did well - what were the big contributions to that success for you? If you hoped
to have done better, what were some factors that may have affected your performance
(these include comfort level with the material, but also things like not sleeping enough
the day before, or time pressure etc).

How did you implement your proposed strategy from last time? Last reflection,
you wrote yourself a specific list of things that you wanted to try to change up your
study strategies. Give yourself an honest evaluation: how well did you follow your past
recommendations? Additionally, look at your past recommendations critically - did you
suggest things that were reasonable, given your time/energy/bandwidth this semester?
Did you suggest things that actually turned out to be helpful?

What were your study strategies? What did you actually do this time in preparation
for the exam? Did you study for the exam with friends, or alone? How did you use the
practice exam? Of the things you did do, what felt like it had the most payoff? Did any
of your studying feel unproductive for you (as in, you put a lot of time into a particular
concept or strategy, but in the end still struggled with that)?
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Where is this class as a priority for you this term? We all only have so much time
in a day, and we have so many obligations in school and in life: its important to try and
accurately assess your priorities when making plans for the future - so that they can be
realistic and helpful. Take time here to give an honest evaluation of your course load
this term: what class are you worried most about? What class do you think will take
the most work going forward? What class are you least concerned about? Use your
own personal ranking here in the next step, to make a realistic recommendation.

What are some recommendations for your future self? Now that you’ve been
through this cycle twice, combine what you have learned to give yourself a concrete
plan for how you will work on this class over the last month of the term.
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Problems

Optimizing Volume of a Wineglass

We so far have been using triple integrals to compute the total amount of some function
𝑓 over a region 𝐸. Remember that when this function 𝑓 is just the constant 1, you end
up with an integral of the form

∭𝐸
𝑑𝑉

and this just computes the volume of the region E! This is very useful in practice, as the
volumes of complicated regions can be calculated using integration techniques.

As an example here, imagine you are an industrial engineer working for a company
that manufactures sets of high-end drinkware: wine glasses, champagne flutes, and so
on. The designers of the new collection have come up with a parametric model: a single
model with several tune-able parameters. Their model describes the interior of the glass
by a region 𝐸𝑎,𝑏 , which can be tuned by changing two parameters 𝑎, 𝑏:

𝐸𝑎,𝑏 = {(𝑥, 𝑦 , 𝑧) ∣ 𝑏(𝑥2 + 𝑦2) ≤ 𝑧 ≤ 𝑎}

The units here are centimeters, so the volume of the region is given in cm3, better known
as milliliters. The goal of this parametric is to be able to define different glass shapes by
choosing different relationships between the parameters.

• Wine Glasses are shorter and fatter, so to design a wine glass we set the width
and height parameters equal, 𝑎 = 𝑏 and get a model that depends on a single
parameter.

• Champagne Flutes are taller and skinnier: to design one of these, we set the
height parameter 𝑏 equal to three times the width parameter, so 𝑏 = 3𝑎.

If the company later wants to expand its glassware collection, it does not need to go
through the process of redesigning new models from scratch, it can just change the
relationship between 𝑎 and 𝑏 to get a new look and feel.
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Figure 17.45.: The density of the earth varies with radius, as its composition changes
from the crust to the core.

After doing a review of several cups across the industry, your manager finds the average
volume of a red wine glass is 360mL. They then task you with taking the model from
the design team, and constructing a wine glass as part of their collection that holds this
same volume. What are the values of the parameters 𝑎, 𝑏 that you need to report back
to manufacturing, to have a glass of the right size?

Hint: find the volume of 𝐸𝑎,𝑏 as a function of the parameters, by doing a triple integral in
cylindrical coordinates. Use the equation given to find the bounds for 𝑧 and the bounds for
𝑟 ! Then, after finding the general formula, use the fact that this is to be a wine glass to get
𝐸𝑎,𝑏 in terms of a single parameter, and then solve the equation for this volume to equal
360𝑚𝐿 using a calculator or computer.

The Mass of the Earth

The interior structure of the Earth is very difficult to probe: we live on the very surface
of the crust, a rocky layer over 20 miles thick, and to date the deepest humans have ever
drilled is the Kola Superdeep Borehole, dug to a depth of 7.69 miles by the USSR (and
stopped when the heat and pressure was melting through all drillbits).

Thus, it is a true wonder of modern science that we are able to calculate the density
of the earth at various depths without directly retrieving samples: instead, we use the
vibrations of earthquakes (and a lot of sophisticated mathematics) to deduce the density
deep below the crust. To a very good approximation, the earth is spherically symmetric

The true shape of the earth
is called the Geoid, and is
a slightly bumpy, slightly
flattened sphere. But the

total deviations from
perfect spherical symmetry
are less than 40km across

the entire earth of diameter
12,760km: so a perfectly
spherical model is more

than sufficient for
calculations such as mass

and density!

, and so we may record the density of the earth as a function 𝐷(𝑟) of the *radius$ 𝑟 from
the center. With the density function 𝐷 in hand, the mass of the earth 𝐸 is given by the
triple integral

𝑀 = ∭𝐸
𝐷 𝑑𝑉
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Sailing in the Bay

While the true density function of the earth is rather complicated, its general behavior
is well-approximated by the following function: its more dense in the center at the
metal core, with density dropping off to an approximate constant level in the mantle
and surface (where the earth is mostly rock, not metal):

𝐷(𝑟) = 𝑎 + 𝑏
1 + 𝑟2

Where 𝑟 is measured in thousands of kilometers and 𝑎 is the density of rock
(𝑎 = 3, 000𝑘𝑔/𝑚3), and 𝑏 is the difference in density between rock and metal, or
𝑏 = 6, 000𝑘𝑔/𝑚3. For the coming calculations, its useful to compute these to the
units of kilograms per cubic 1000km to match the units on 𝑟 : That is 𝑎 = 3 ⋅ 1012 and
𝑏 = 6 ⋅ 1012.

Figure 17.46.: Parametric design allows multiple different objects to be expressed using
the same formula, just changing the constant parameters.

Approximating the earth as a sphere of radius 𝑅 = 6, 000 kilometers, set up a triple
integral in spherical coordinates that finds the mass of the earth.

Solve this integral (don’t plug in the numbers until the end, as the formula will be much
cleaner if you keep 𝑅, 𝑎, 𝑏 as variables), and then plug in the relevant constants. What is
the mass of the earth in kilograms? (Plug the numbers in using a calculator or computer:
the result will be a very large number, best reported in scientific notation!)

Sailing in the Bay

Two boats are sailing from one side of the bay to the other. In-between, the ocean water
is flowing in a complicated pattern (due to tides flowing in and out of the golden gate).
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This water flow can be well-approximated by the vector field �⃗�

�⃗� = ⟨2𝑥𝑦 − 𝑦, 𝑥2 − 𝑥 + 1⟩

The first boat follows the path 𝑟 and the second follows the path 𝑠

𝑟(𝑡) = ⟨𝑡, 𝑡2⟩ 𝑠(𝑡) = ⟨𝑡2, 𝑡3⟩ 0 ≤ 𝑡 ≤ 1

Figure 17.47.: Boats sailing across the SF bay.

Compute the appropriate line integrals to answer the following question: does one boat
have a more difficult journey across the bay, or is the trip equally difficult for both
vessels?
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